6s2f: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='6s2f' size='340' side='right'caption='[[6s2f]], [[Resolution|resolution]] 5.80&Aring;' scene=''>
<StructureSection load='6s2f' size='340' side='right'caption='[[6s2f]], [[Resolution|resolution]] 5.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6s2f]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6S2F OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6S2F FirstGlance]. <br>
<table><tr><td colspan='2'>[[6s2f]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6S2F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6S2F FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 5.8&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">POL2, DUN2, YNL262W, N0825 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), CTF8, YHR191C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), CTF18, CHL12, YMR078C, YM9582.03C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), DCC1, YCL016C, YCL16C ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6s2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6s2f OCA], [https://pdbe.org/6s2f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6s2f RCSB], [https://www.ebi.ac.uk/pdbsum/6s2f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6s2f ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6s2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6s2f OCA], [http://pdbe.org/6s2f PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6s2f RCSB], [http://www.ebi.ac.uk/pdbsum/6s2f PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6s2f ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/DCC1_YEAST DCC1_YEAST]] Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.<ref>PMID:11389843</ref> <ref>PMID:15964801</ref>  [[http://www.uniprot.org/uniprot/DPOE_YEAST DPOE_YEAST]] DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3'-5' proofreading exonuclease activity that correct errors arising during DNA replication. It is also involved in DNA synthesis during DNA repair.<ref>PMID:12124389</ref> [[http://www.uniprot.org/uniprot/CTF18_YEAST CTF18_YEAST]] Essential for the fidelity of chromosome transmission. Required for the DNA replication block checkpoint. Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.<ref>PMID:11287619</ref> <ref>PMID:11389843</ref> <ref>PMID:11486023</ref> <ref>PMID:15964801</ref>  [[http://www.uniprot.org/uniprot/CTF8_YEAST CTF8_YEAST]] Essential for the fidelity of chromosome transmission. Required for the DNA replication block checkpoint. Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA.<ref>PMID:11389843</ref> <ref>PMID:15964801</ref> 
[https://www.uniprot.org/uniprot/DPOE_YEAST DPOE_YEAST] DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3'-5' proofreading exonuclease activity that correct errors arising during DNA replication. It is also involved in DNA synthesis during DNA repair.<ref>PMID:12124389</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 27: Line 26:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Baker's yeast]]
[[Category: DNA-directed DNA polymerase]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Grabarczyk, D B]]
[[Category: Saccharomyces cerevisiae S288C]]
[[Category: Song, B]]
[[Category: Grabarczyk DB]]
[[Category: Dna polymerase]]
[[Category: Song B]]
[[Category: Pcna loader]]
[[Category: Protein complex]]
[[Category: Replication]]

Latest revision as of 13:14, 22 May 2024

Cryo-EM structure of Ctf18-1-8 in complex with the catalytic domain of DNA polymerase epsilon (Class 2)Cryo-EM structure of Ctf18-1-8 in complex with the catalytic domain of DNA polymerase epsilon (Class 2)

Structural highlights

6s2f is a 4 chain structure with sequence from Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 5.8Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DPOE_YEAST DNA polymerase epsilon (DNA polymerase II) participates in chromosomal DNA replication. It is required during synthesis of the leading and lagging DNA strands at the replication fork and binds at/or near replication origins and moves along DNA with the replication fork. It has 3'-5' proofreading exonuclease activity that correct errors arising during DNA replication. It is also involved in DNA synthesis during DNA repair.[1]

Publication Abstract from PubMed

The eukaryotic replisome must faithfully replicate DNA and cope with replication fork blocks and stalling, while simultaneously promoting sister chromatid cohesion. Ctf18-RFC is an alternative PCNA loader that links all these processes together by an unknown mechanism. Here, we use integrative structural biology combined with yeast genetics and biochemistry to highlight the specific functions that Ctf18-RFC plays within the leading strand machinery via an interaction with the catalytic domain of DNA Pol . We show that a large and unusually flexible interface enables this interaction to occur constitutively throughout the cell cycle and regardless of whether forks are replicating or stalled. We reveal that, by being anchored to the leading strand polymerase, Ctf18-RFC can rapidly signal fork stalling to activate the S phase checkpoint. Moreover, we demonstrate that, independently of checkpoint signaling or chromosome cohesion, Ctf18-RFC functions in parallel to Chl1 and Mrc1 to protect replication forks and cell viability.

Ctf18-RFC and DNA Pol form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication.,Stokes K, Winczura A, Song B, Piccoli G, Grabarczyk DB Nucleic Acids Res. 2020 Aug 20;48(14):8128-8145. doi: 10.1093/nar/gkaa541. PMID:32585006[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Shimizu K, Hashimoto K, Kirchner JM, Nakai W, Nishikawa H, Resnick MA, Sugino A. Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae. J Biol Chem. 2002 Oct 4;277(40):37422-9. Epub 2002 Jul 17. PMID:12124389 doi:http://dx.doi.org/10.1074/jbc.M204476200
  2. Stokes K, Winczura A, Song B, Piccoli G, Grabarczyk DB. Ctf18-RFC and DNA Pol form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication. Nucleic Acids Res. 2020 Aug 20;48(14):8128-8145. doi: 10.1093/nar/gkaa541. PMID:32585006 doi:http://dx.doi.org/10.1093/nar/gkaa541

6s2f, resolution 5.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA