2mfr: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2mfr]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The February 2015 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Insulin Receptor'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2015_2 10.2210/rcsb_pdb/mom_2015_2]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2MFR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2MFR FirstGlance]. <br> | <table><tr><td colspan='2'>[[2mfr]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The February 2015 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Insulin Receptor'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2015_2 10.2210/rcsb_pdb/mom_2015_2]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2MFR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2MFR FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2mfr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2mfr OCA], [https://pdbe.org/2mfr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2mfr RCSB], [https://www.ebi.ac.uk/pdbsum/2mfr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2mfr ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2mfr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2mfr OCA], [https://pdbe.org/2mfr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2mfr RCSB], [https://www.ebi.ac.uk/pdbsum/2mfr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2mfr ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Disease == | == Disease == |
Latest revision as of 09:05, 15 May 2024
Solution structure of the transmembrane domain of the insulin receptor in micellesSolution structure of the transmembrane domain of the insulin receptor in micelles
Structural highlights
DiseaseINSR_HUMAN Defects in INSR are the cause of Rabson-Mendenhall syndrome (RMS) [MIM:262190; also known as Mendenhall syndrome. RMS is a severe insulin resistance syndrome characterized by insulin-resistant diabetes mellitus with pineal hyperplasia and somatic abnormalities. Typical features include coarse, senile-appearing facies, dental and skin abnormalities, abdominal distension, and phallic enlargement. Inheritance is autosomal recessive.[1] [2] [3] [4] [5] [6] Defects in INSR are the cause of leprechaunism (LEPRCH) [MIM:246200; also known as Donohue syndrome. Leprechaunism represents the most severe form of insulin resistance syndrome, characterized by intrauterine and postnatal growth retardation and death in early infancy. Inheritance is autosomal recessive.[7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Defects in INSR may be associated with noninsulin-dependent diabetes mellitus (NIDDM) [MIM:125853; also known as diabetes mellitus type 2.[24] [25] [26] Defects in INSR are the cause of familial hyperinsulinemic hypoglycemia type 5 (HHF5) [MIM:609968. Familial hyperinsulinemic hypoglycemia [MIM:256450, also referred to as congenital hyperinsulinism, nesidioblastosis, or persistent hyperinsulinemic hypoglycemia of infancy (PPHI), is the most common cause of persistent hypoglycemia in infancy and is due to defective negative feedback regulation of insulin secretion by low glucose levels.[27] Defects in INSR are the cause of insulin-resistant diabetes mellitus with acanthosis nigricans type A (IRAN type A) [MIM:610549. This syndrome is characterized by the association of severe insulin resistance (manifested by marked hyperinsulinemia and a failure to respond to exogenous insulin) with the skin lesion acanthosis nigricans and ovarian hyperandrogenism in adolescent female subjects. Women frequently present with hirsutism, acne, amenorrhea or oligomenorrhea, and virilization. This syndrome is different from the type B that has been demonstrated to be secondary to the presence of circulating autoantibodies against the insulin receptor. FunctionINSR_HUMAN Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.[28] [29] [30] [31] [32] [33] [34] [35] Publication Abstract from PubMedThe insulin receptor (IR) binds insulin and plays important roles in glucose homeostasis by regulating the tyrosine kinase activity at its C-terminus. Its transmembrane domain (TMD) is shown to be important for transferring conformational changes induced by insulin across the cell membrane to regulate kinase activity. In this study, a construct IR940-988 containing the TMD was expressed and purified for structural studies. Its solution structure in dodecylphosphocholine (DPC) micelles was determined. The sequence containing residues L962 to Y976 of the TMD of the IR in micelles adopts a well-defined helical structure with a kink formed by glycine and proline residues present at its N-terminus, which might be important for its function. Paramagnetic relaxation enhancement (PRE) and relaxation experimental results suggest that residues following the TMD are flexible and expose to aqueous solution. Although purified IR940-988 in micelles existed mainly as a monomeric form verified by gel filtration and relaxation analysis, cross-linking study suggests that it may form a dimer or oligomers under micelle conditions. Solution structure of the transmembrane domain of the insulin receptor in detergent micelles.,Li Q, Wong YL, Kang C Biochim Biophys Acta. 2014 May;1838(5):1313-21. doi:, 10.1016/j.bbamem.2014.01.005. Epub 2014 Jan 16. PMID:24440425[36] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|