2m48: Difference between revisions

No edit summary
No edit summary
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/PRKN_DROME PRKN_DROME] E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as Paris, Marf, Opa1, Miro, pnut, Septin1, Tom20 and porin (PubMed:16002472, PubMed:17456438, PubMed:25474007, PubMed:20194754, PubMed:24192653, PubMed:24901221, PubMed:27906179, PubMed:31714929, PubMed:32138754, PubMed:32047033, PubMed:23770917). Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates, depending on the context (PubMed:18957282, PubMed:24901221, PubMed:25474007, PubMed:23650379, PubMed:27906179, PubMed:31714929, PubMed:32047033). Protects against mitochondrial dysfunction during cellular stress, by acting downstream of Pink1, to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components (PubMed:12642658, PubMed:15073152, PubMed:16672980, PubMed:16672981, PubMed:17123504, PubMed:18957282, PubMed:18799731, PubMed:18230723, PubMed:18443288, PubMed:20496123, PubMed:20194754, PubMed:23509287, PubMed:24192653, PubMed:24901221, PubMed:25474007, PubMed:27906179, PubMed:29497364, PubMed:32047033). Depending on the severity of mitochondrial damage and/or dysfunction, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to regulating mitochondrial dynamics and eliminating severely damaged mitochondria via mitophagy (PubMed:12642658, PubMed:15073152, PubMed:16002472, PubMed:16672980, PubMed:16672981, PubMed:17123504, PubMed:18957282, PubMed:18799731, PubMed:18230723, PubMed:18443288, PubMed:20496123, PubMed:20194754, PubMed:23509287, PubMed:24192653, PubMed:24901221, PubMed:25474007, PubMed:27906179, PubMed:29497364, PubMed:32047033). Appears to be particularly important in maintaining the physiology and function of cells with high energy demands that are undergoing stress or altered metabolic environment, including spermatids, muscle cells and neurons such as the dopaminergic (DA) neurons (PubMed:12642658, PubMed:15073152, PubMed:16002472, PubMed:16672980, PubMed:17123504, PubMed:18799731, PubMed:20483372, PubMed:22396657, PubMed:24901221, PubMed:28435104, PubMed:29497364, PubMed:31714929). Activation and recruitment onto the outer membrane of damaged/dysfunctional mitochondria (OMM) requires Pink1-mediated phosphorylation of both park and ubiquitin (PubMed:18957282, PubMed:24901221, PubMed:20194754, PubMed:22396657, PubMed:18799731, PubMed:18230723, PubMed:25474007, PubMed:27906179). In depolarized mitochondria, mediates the decision between mitophagy or preventing apoptosis by inducing either the poly- or monoubiquitination of porin/VDAC; polyubiquitination of porin promotes mitophagy, while monoubiquitination of porin decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:32047033). When cellular stress results in irreversible mitochondrial damage, promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins (PubMed:16672980, PubMed:16672981, PubMed:20194754, PubMed:18957282, PubMed:23509287, PubMed:24192653, PubMed:25474007, PubMed:29497364). Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains following mitochondrial damage, leading to mitophagy (PubMed:32047033, PubMed:23650379). In developing tissues, inhibits JNK-mediated apoptosis by negatively regulating bsk transcription (PubMed:16002472, PubMed:20496123). The Pink1-park pathway also promotes fission and/or inhibits fusion of damaged mitochondria by mediating the ubiquitination and subsequent degradation of proteins involved in mitochondrial fusion/fission such as Marf, Opa1 and fzo (PubMed:18443288, PubMed:17123504, PubMed:18799731, PubMed:18230723, PubMed:20194754, PubMed:23650379, PubMed:24192653, PubMed:24901221, PubMed:29497364). This prevents the refusion of unhealthy mitochondria with the healthy mitochondrial network and/or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes (PubMed:18443288, PubMed:17123504, PubMed:18799731, PubMed:18230723, PubMed:20194754, PubMed:23650379, PubMed:24192653, PubMed:24901221, PubMed:29497364). Regulates motility of damaged mitochondria by phosphorylating Miro which likely promotes its park-dependent degradation by the proteasome; in motor neurons, this inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria being eliminated in the soma (PubMed:22396657). The Pink1-park pathway is also involved in mitochondrial regeneration processes such as promoting mitochondrial biogenesis, activating localized mitochondrial repair, promoting selective turnover of mitochondrial proteins and initiating the mitochondrial import of endogenous proteins (PubMed:16672980, PubMed:20496123, PubMed:20869429, PubMed:23509287, PubMed:23650379, PubMed:24192653, PubMed:25565208, PubMed:29497364). Involved in mitochondrial biogenesis via the ubiquitination of transcriptional repressor Paris which leads to its subsequent proteasomal degradation and allows activation of the transcription factor srl (PubMed:23509287, PubMed:29497364, PubMed:32138754). Promotes localized mitochondrial repair by activating the translation of specific nuclear-encoded mitochondrial RNAs (nc-mtRNAs) on the mitochondrial surface, including several key electron transport chain component nc-mtRNAs (PubMed:23509287, PubMed:25565208).<ref>PMID:12642658</ref> <ref>PMID:15073152</ref> <ref>PMID:16002472</ref> <ref>PMID:16672980</ref> <ref>PMID:16672981</ref> <ref>PMID:17123504</ref> <ref>PMID:17456438</ref> <ref>PMID:18230723</ref> <ref>PMID:18443288</ref> <ref>PMID:18799731</ref> <ref>PMID:18957282</ref> <ref>PMID:20194754</ref> <ref>PMID:20483372</ref> <ref>PMID:20496123</ref> <ref>PMID:20869429</ref> <ref>PMID:22396657</ref> <ref>PMID:23509287</ref> <ref>PMID:23650379</ref> <ref>PMID:23770917</ref> <ref>PMID:24192653</ref> <ref>PMID:24901221</ref> <ref>PMID:25474007</ref> <ref>PMID:25565208</ref> <ref>PMID:27906179</ref> <ref>PMID:28435104</ref> <ref>PMID:29497364</ref> <ref>PMID:31714929</ref> <ref>PMID:32047033</ref> <ref>PMID:32138754</ref>  
[https://www.uniprot.org/uniprot/PRKN_DROME PRKN_DROME] E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as Paris, Marf, Opa1, Miro, pnut, Septin1, Tom20 and porin (PubMed:16002472, PubMed:17456438, PubMed:25474007, PubMed:20194754, PubMed:24192653, PubMed:24901221, PubMed:27906179, PubMed:31714929, PubMed:32138754, PubMed:32047033, PubMed:23770917). Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates, depending on the context (PubMed:18957282, PubMed:24901221, PubMed:25474007, PubMed:23650379, PubMed:27906179, PubMed:31714929, PubMed:32047033). Protects against mitochondrial dysfunction during cellular stress, by acting downstream of Pink1, to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components (PubMed:12642658, PubMed:15073152, PubMed:16672980, PubMed:16672981, PubMed:17123504, PubMed:18957282, PubMed:18799731, PubMed:18230723, PubMed:18443288, PubMed:20496123, PubMed:20194754, PubMed:23509287, PubMed:24192653, PubMed:24901221, PubMed:25474007, PubMed:27906179, PubMed:29497364, PubMed:32047033). Depending on the severity of mitochondrial damage and/or dysfunction, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to regulating mitochondrial dynamics and eliminating severely damaged mitochondria via mitophagy (PubMed:12642658, PubMed:15073152, PubMed:16002472, PubMed:16672980, PubMed:16672981, PubMed:17123504, PubMed:18957282, PubMed:18799731, PubMed:18230723, PubMed:18443288, PubMed:20496123, PubMed:20194754, PubMed:23509287, PubMed:24192653, PubMed:24901221, PubMed:25474007, PubMed:27906179, PubMed:29497364, PubMed:32047033). Appears to be particularly important in maintaining the physiology and function of cells with high energy demands that are undergoing stress or altered metabolic environment, including spermatids, muscle cells and neurons such as the dopaminergic (DA) neurons (PubMed:12642658, PubMed:15073152, PubMed:16002472, PubMed:16672980, PubMed:17123504, PubMed:18799731, PubMed:20483372, PubMed:22396657, PubMed:24901221, PubMed:28435104, PubMed:29497364, PubMed:31714929). Activation and recruitment onto the outer membrane of damaged/dysfunctional mitochondria (OMM) requires Pink1-mediated phosphorylation of both park and ubiquitin (PubMed:18957282, PubMed:24901221, PubMed:20194754, PubMed:22396657, PubMed:18799731, PubMed:18230723, PubMed:25474007, PubMed:27906179). In depolarized mitochondria, mediates the decision between mitophagy or preventing apoptosis by inducing either the poly- or monoubiquitination of porin/VDAC; polyubiquitination of porin promotes mitophagy, while monoubiquitination of porin decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:32047033). When cellular stress results in irreversible mitochondrial damage, promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins (PubMed:16672980, PubMed:16672981, PubMed:20194754, PubMed:18957282, PubMed:23509287, PubMed:24192653, PubMed:25474007, PubMed:29497364). Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains following mitochondrial damage, leading to mitophagy (PubMed:32047033, PubMed:23650379). In developing tissues, inhibits JNK-mediated apoptosis by negatively regulating bsk transcription (PubMed:16002472, PubMed:20496123). The Pink1-park pathway also promotes fission and/or inhibits fusion of damaged mitochondria by mediating the ubiquitination and subsequent degradation of proteins involved in mitochondrial fusion/fission such as Marf, Opa1 and fzo (PubMed:18443288, PubMed:17123504, PubMed:18799731, PubMed:18230723, PubMed:20194754, PubMed:23650379, PubMed:24192653, PubMed:24901221, PubMed:29497364). This prevents the refusion of unhealthy mitochondria with the healthy mitochondrial network and/or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes (PubMed:18443288, PubMed:17123504, PubMed:18799731, PubMed:18230723, PubMed:20194754, PubMed:23650379, PubMed:24192653, PubMed:24901221, PubMed:29497364). Regulates motility of damaged mitochondria by phosphorylating Miro which likely promotes its park-dependent degradation by the proteasome; in motor neurons, this inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria being eliminated in the soma (PubMed:22396657). The Pink1-park pathway is also involved in mitochondrial regeneration processes such as promoting mitochondrial biogenesis, activating localized mitochondrial repair, promoting selective turnover of mitochondrial proteins and initiating the mitochondrial import of endogenous proteins (PubMed:16672980, PubMed:20496123, PubMed:20869429, PubMed:23509287, PubMed:23650379, PubMed:24192653, PubMed:25565208, PubMed:29497364). Involved in mitochondrial biogenesis via the ubiquitination of transcriptional repressor Paris which leads to its subsequent proteasomal degradation and allows activation of the transcription factor srl (PubMed:23509287, PubMed:29497364, PubMed:32138754). Promotes localized mitochondrial repair by activating the translation of specific nuclear-encoded mitochondrial RNAs (nc-mtRNAs) on the mitochondrial surface, including several key electron transport chain component nc-mtRNAs (PubMed:23509287, PubMed:25565208).<ref>PMID:12642658</ref> <ref>PMID:15073152</ref> <ref>PMID:16002472</ref> <ref>PMID:16672980</ref> <ref>PMID:16672981</ref> <ref>PMID:17123504</ref> <ref>PMID:17456438</ref> <ref>PMID:18230723</ref> <ref>PMID:18443288</ref> <ref>PMID:18799731</ref> <ref>PMID:18957282</ref> <ref>PMID:20194754</ref> <ref>PMID:20483372</ref> <ref>PMID:20496123</ref> <ref>PMID:20869429</ref> <ref>PMID:22396657</ref> <ref>PMID:23509287</ref> <ref>PMID:23650379</ref> <ref>PMID:23770917</ref> <ref>PMID:24192653</ref> <ref>PMID:24901221</ref> <ref>PMID:25474007</ref> <ref>PMID:25565208</ref> <ref>PMID:27906179</ref> <ref>PMID:28435104</ref> <ref>PMID:29497364</ref> <ref>PMID:31714929</ref> <ref>PMID:32047033</ref> <ref>PMID:32138754</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Mutations in the park2 gene, encoding the RING-inBetweenRING-RING E3 ubiquitin ligase parkin, cause 50% of autosomal recessive juvenile Parkinsonism cases. More than 70 known pathogenic mutations occur throughout parkin, many of which cluster in the inhibitory amino-terminal ubiquitin-like domain, and the carboxy-terminal RING2 domain that is indispensable for ubiquitin transfer. A structural rationale showing how autosomal recessive juvenile Parkinsonism mutations alter parkin function is still lacking. Here we show that the structure of parkin RING2 is distinct from canonical RING E3 ligases and lacks key elements required for E2-conjugating enzyme recruitment. Several pathogenic mutations in RING2 alter the environment of a single surface-exposed catalytic cysteine to inhibit ubiquitination. Native parkin adopts a globular inhibited conformation in solution facilitated by the association of the ubiquitin-like domain with the RING-inBetweenRING-RING C-terminus. Autosomal recessive juvenile Parkinsonism mutations disrupt this conformation. Finally, parkin autoubiquitinates only in cis, providing a molecular explanation for the recessive nature of autosomal recessive juvenile Parkinsonism.
A molecular explanation for the recessive nature of parkin-linked Parkinson's disease.,Spratt DE, Julio Martinez-Torres R, Noh YJ, Mercier P, Manczyk N, Barber KR, Aguirre JD, Burchell L, Purkiss A, Walden H, Shaw GS Nat Commun. 2013 Jun 17;4:1983. doi: 10.1038/ncomms2983. PMID:23770917<ref>PMID:23770917</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2m48" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA