1unq: Difference between revisions

No edit summary
No edit summary
Line 6: Line 6:
==Overview==
==Overview==
Protein kinase B (PKB/Akt) is a key regulator of cell growth, proliferation and metabolism. It possesses an N-terminal pleckstrin, homology (PH) domain that interacts with equal affinity with the second, messengers PtdIns(3,4,5)P3 and PtdIns(3,4)P2, generated through insulin, and growth factor-mediated activation of phosphoinositide 3-kinase (PI3K)., The binding of PKB to PtdIns(3,4,5)P3/PtdIns(3,4)P2 recruits PKB from the, cytosol to the plasma membrane and is also thought to induce a, conformational change that converts PKB into a substrate that can be, activated by the phosphoinositide-dependent kinase 1 (PDK1). In this study, we describe two high-resolution crystal structures of the PH domain of, PKBalpha in a noncomplexed form and compare this to a new atomic, resolution (0.98 A, where 1 A=0.1 nm) structure of the PH domain of, PKBalpha complexed to Ins(1,3,4,5)P4, the head group of PtdIns(3,4,5)P3., Remarkably, in contrast to all other PH domains crystallized so far, our, data suggest that binding of Ins(1,3,4,5)P4 to the PH domain of PKB, induces a large conformational change. This is characterized by marked, changes in certain residues making up the phosphoinositide-binding site, formation of a short a-helix in variable loop 2, and a movement of, variable loop 3 away from the lipid-binding site. Solution studies with CD, also provided evidence of conformational changes taking place upon binding, of Ins(1,3,4,5)P4 to the PH domain of PKB. Our data provides the first, structural insight into the mechanism by which the interaction of PKB with, PtdIns(3,4,5)P3/PtdIns(3,4)P2 induces conformational changes that could, enable PKB to be activated by PDK1.
Protein kinase B (PKB/Akt) is a key regulator of cell growth, proliferation and metabolism. It possesses an N-terminal pleckstrin, homology (PH) domain that interacts with equal affinity with the second, messengers PtdIns(3,4,5)P3 and PtdIns(3,4)P2, generated through insulin, and growth factor-mediated activation of phosphoinositide 3-kinase (PI3K)., The binding of PKB to PtdIns(3,4,5)P3/PtdIns(3,4)P2 recruits PKB from the, cytosol to the plasma membrane and is also thought to induce a, conformational change that converts PKB into a substrate that can be, activated by the phosphoinositide-dependent kinase 1 (PDK1). In this study, we describe two high-resolution crystal structures of the PH domain of, PKBalpha in a noncomplexed form and compare this to a new atomic, resolution (0.98 A, where 1 A=0.1 nm) structure of the PH domain of, PKBalpha complexed to Ins(1,3,4,5)P4, the head group of PtdIns(3,4,5)P3., Remarkably, in contrast to all other PH domains crystallized so far, our, data suggest that binding of Ins(1,3,4,5)P4 to the PH domain of PKB, induces a large conformational change. This is characterized by marked, changes in certain residues making up the phosphoinositide-binding site, formation of a short a-helix in variable loop 2, and a movement of, variable loop 3 away from the lipid-binding site. Solution studies with CD, also provided evidence of conformational changes taking place upon binding, of Ins(1,3,4,5)P4 to the PH domain of PKB. Our data provides the first, structural insight into the mechanism by which the interaction of PKB with, PtdIns(3,4,5)P3/PtdIns(3,4)P2 induces conformational changes that could, enable PKB to be activated by PDK1.
==Disease==
Known diseases associated with this structure: Neutrophil immunodeficiency syndrome OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=602049 602049]], Schizophrenia, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=164730 164730]]


==About this Structure==
==About this Structure==
Line 32: Line 35:
[[Category: transferase]]
[[Category: transferase]]


''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Mon Nov 5 17:07:17 2007''
''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Mon Nov 12 19:36:57 2007''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA