1rfa: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==NMR SOLUTION STRUCTURE OF THE RAS-BINDING DOMAIN OF C-RAF-1== | ==NMR SOLUTION STRUCTURE OF THE RAS-BINDING DOMAIN OF C-RAF-1== | ||
<StructureSection load='1rfa' size='340' side='right'caption='[[1rfa | <StructureSection load='1rfa' size='340' side='right'caption='[[1rfa]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1rfa]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[1rfa]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1RFA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1RFA FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rfa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rfa OCA], [https://pdbe.org/1rfa PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rfa RCSB], [https://www.ebi.ac.uk/pdbsum/1rfa PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rfa ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1rfa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rfa OCA], [https://pdbe.org/1rfa PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1rfa RCSB], [https://www.ebi.ac.uk/pdbsum/1rfa PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1rfa ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Disease == | == Disease == | ||
[https://www.uniprot.org/uniprot/RAF1_HUMAN RAF1_HUMAN] Defects in RAF1 are the cause of Noonan syndrome type 5 (NS5) [MIM:[https://omim.org/entry/611553 611553]. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births.<ref>PMID:17603483</ref> <ref>PMID:17603482</ref> <ref>PMID:20683980</ref> Defects in RAF1 are the cause of LEOPARD syndrome type 2 (LEOPARD2) [MIM:[https://omim.org/entry/611554 611554]. LEOPARD syndrome is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.<ref>PMID:17603483</ref> | |||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/RAF1_HUMAN RAF1_HUMAN] Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation.<ref>PMID:9360956</ref> <ref>PMID:11427728</ref> <ref>PMID:11719507</ref> <ref>PMID:15385642</ref> <ref>PMID:15618521</ref> <ref>PMID:15849194</ref> <ref>PMID:16924233</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 20: | Line 21: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rfa ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rfa ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
==See Also== | ==See Also== | ||
Line 36: | Line 28: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Emerson | [[Category: Emerson SD]] | ||
[[Category: Fry | [[Category: Fry DC]] | ||
[[Category: Kiefer | [[Category: Kiefer SE]] | ||
[[Category: Liu | [[Category: Liu SP]] | ||
[[Category: Madison | [[Category: Madison VS]] | ||
[[Category: Palermo | [[Category: Palermo RE]] | ||
[[Category: Scheffler | [[Category: Scheffler JE]] | ||
[[Category: Tsao | [[Category: Tsao K-L]] | ||
[[Category: Waugh | [[Category: Waugh DS]] | ||
Revision as of 11:22, 1 May 2024
NMR SOLUTION STRUCTURE OF THE RAS-BINDING DOMAIN OF C-RAF-1NMR SOLUTION STRUCTURE OF THE RAS-BINDING DOMAIN OF C-RAF-1
Structural highlights
DiseaseRAF1_HUMAN Defects in RAF1 are the cause of Noonan syndrome type 5 (NS5) [MIM:611553. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births.[1] [2] [3] Defects in RAF1 are the cause of LEOPARD syndrome type 2 (LEOPARD2) [MIM:611554. LEOPARD syndrome is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.[4] FunctionRAF1_HUMAN Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation.[5] [6] [7] [8] [9] [10] [11] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. See AlsoReferences
|
|