2l1r: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


==The structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin I==
==The structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin I==
<StructureSection load='2l1r' size='340' side='right'caption='[[2l1r]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
<StructureSection load='2l1r' size='340' side='right'caption='[[2l1r]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2l1r]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L1R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2L1R FirstGlance]. <br>
<table><tr><td colspan='2'>[[2l1r]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L1R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2L1R FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SXK:[(2,4-DIFLUOROBIPHENYL-4-YL)OXY]ACETIC+ACID'>SXK</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2krd|2krd]], [[1lxf|1lxf]], [[1ytz|1ytz]], [[1dtl|1dtl]], [[1wrk|1wrk]], [[2kfx|2kfx]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SXK:[(2,4-DIFLUOROBIPHENYL-4-YL)OXY]ACETIC+ACID'>SXK</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TNNC1, TNNC ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2l1r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l1r OCA], [https://pdbe.org/2l1r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2l1r RCSB], [https://www.ebi.ac.uk/pdbsum/2l1r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2l1r ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2l1r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l1r OCA], [https://pdbe.org/2l1r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2l1r RCSB], [https://www.ebi.ac.uk/pdbsum/2l1r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2l1r ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/TNNC1_HUMAN TNNC1_HUMAN]] Defects in TNNC1 are the cause of cardiomyopathy dilated type 1Z (CMD1Z) [MIM:[https://omim.org/entry/611879 611879]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:15542288</ref>  Defects in TNNC1 are the cause of familial hypertrophic cardiomyopathy type 13 (CMH13) [MIM:[https://omim.org/entry/613243 613243]]. A hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:11385718</ref> <ref>PMID:16302972</ref> <ref>PMID:18572189</ref> <ref>PMID:19439414</ref> [[https://www.uniprot.org/uniprot/TNNI3_HUMAN TNNI3_HUMAN]] Defects in TNNI3 are the cause of familial hypertrophic cardiomyopathy type 7 (CMH7) [MIM:[https://omim.org/entry/613690 613690]]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:9241277</ref> <ref>PMID:11815426</ref> <ref>PMID:12707239</ref> <ref>PMID:12974739</ref> <ref>PMID:16199542</ref>  Defects in TNNI3 are the cause of familial restrictive cardiomyopathy type 1 (RCM1) [MIM:[https://omim.org/entry/115210 115210]]. RCM1 is a heart muscle disorder characterized by impaired filling of the ventricles with reduced diastolic volume, in the presence of normal or near normal wall thickness and systolic function.<ref>PMID:12531876</ref>  Defects in TNNI3 are the cause of cardiomyopathy dilated type 2A (CMD2A) [MIM:[https://omim.org/entry/611880 611880]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:15070570</ref>  Defects in TNNI3 are the cause of cardiomyopathy dilated type 1FF (CMD1FF) [MIM:[https://omim.org/entry/613286 613286]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.
[https://www.uniprot.org/uniprot/TNNC1_HUMAN TNNC1_HUMAN] Defects in TNNC1 are the cause of cardiomyopathy dilated type 1Z (CMD1Z) [MIM:[https://omim.org/entry/611879 611879]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:15542288</ref>  Defects in TNNC1 are the cause of familial hypertrophic cardiomyopathy type 13 (CMH13) [MIM:[https://omim.org/entry/613243 613243]. A hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:11385718</ref> <ref>PMID:16302972</ref> <ref>PMID:18572189</ref> <ref>PMID:19439414</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/TNNC1_HUMAN TNNC1_HUMAN]] Troponin is the central regulatory protein of striated muscle contraction. Tn consists of three components: Tn-I which is the inhibitor of actomyosin ATPase, Tn-T which contains the binding site for tropomyosin and Tn-C. The binding of calcium to Tn-C abolishes the inhibitory action of Tn on actin filaments. [[https://www.uniprot.org/uniprot/TNNI3_HUMAN TNNI3_HUMAN]] Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.  
[https://www.uniprot.org/uniprot/TNNC1_HUMAN TNNC1_HUMAN] Troponin is the central regulatory protein of striated muscle contraction. Tn consists of three components: Tn-I which is the inhibitor of actomyosin ATPase, Tn-T which contains the binding site for tropomyosin and Tn-C. The binding of calcium to Tn-C abolishes the inhibitory action of Tn on actin filaments.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 23: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2l1r ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2l1r ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The Ca(2+) dependant interaction between troponin I (cTnI) and troponin C (cTnC) triggers contraction in heart muscle. Heart failure is characterized by a decrease in cardiac output, and compounds that increase the sensitivity of cardiac muscle to Ca(2+) have therapeutic potential. The Ca(2+)-sensitizer, levosimendan, targets cTnC; however, detailed understanding of its mechanism has been obscured by its instability. In order to understand how this class of positive inotropes function, we investigated the mode of action of two fluorine containing novel analogs of levosimendan; 2',4'-difluoro(1,1'-biphenyl)-4-yloxy acetic acid (dfbp-o) and 2',4'-difluoro(1,1'-biphenyl)-4-yl acetic acid (dfbp). The affinities of dfbp and dfbp-o for the regulatory domain of cTnC were measured in the absence and presence of cTnI by NMR spectroscopy, and dfbp-o was found to bind more strongly than dfbp. Dfbp-o also increased the affinity of cTnI for cTnC. Dfbp-o increased the Ca(2+)-sensitivity of demembranated cardiac trabeculae in a manner similar to levosimendan. The high resolution NMR solution structure of the cTnC-cTnI-dfbp-o ternary complex showed that dfbp-o bound at the hydrophobic interface formed by cTnC and cTnI making critical interactions with residues such as Arg147 of cTnI. In the absence of cTnI, docking localized dfbp-o to the same position in the hydrophobic groove of cTnC. The structural and functional data reveal that the levosimendan class of Ca(2+/-)-sensitizers work by binding to the regulatory domain of cTnC and stabilizing the pivotal cTnC-cTnI regulatory unit via a network of hydrophobic and electrostatic interactions, in contrast to the destabilizing effects of antagonists such as W7 at the same interface.
A structural and functional perspective into the mechanism of Ca(2+)-sensitizers that target the cardiac troponin complex.,Robertson IM, Sun YB, Li MX, Sykes BD J Mol Cell Cardiol. 2010 Aug 27. PMID:20801130<ref>PMID:20801130</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2l1r" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Troponin|Troponin]]
*[[Troponin 3D structures|Troponin 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Li, M X]]
[[Category: Li MX]]
[[Category: Robertson, I M]]
[[Category: Robertson IM]]
[[Category: Sun, Y]]
[[Category: Sun Y]]
[[Category: Sykes, B D]]
[[Category: Sykes BD]]
[[Category: Ca2+-sensitizer]]
[[Category: Dfbp-o]]
[[Category: Metal binding protein]]
[[Category: N-domain]]
[[Category: Troponin c]]
[[Category: Troponin i]]

Latest revision as of 09:51, 1 May 2024

The structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin IThe structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin I

Structural highlights

2l1r is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

TNNC1_HUMAN Defects in TNNC1 are the cause of cardiomyopathy dilated type 1Z (CMD1Z) [MIM:611879. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[1] Defects in TNNC1 are the cause of familial hypertrophic cardiomyopathy type 13 (CMH13) [MIM:613243. A hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.[2] [3] [4] [5]

Function

TNNC1_HUMAN Troponin is the central regulatory protein of striated muscle contraction. Tn consists of three components: Tn-I which is the inhibitor of actomyosin ATPase, Tn-T which contains the binding site for tropomyosin and Tn-C. The binding of calcium to Tn-C abolishes the inhibitory action of Tn on actin filaments.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Mogensen J, Murphy RT, Shaw T, Bahl A, Redwood C, Watkins H, Burke M, Elliott PM, McKenna WJ. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2004 Nov 16;44(10):2033-40. PMID:15542288 doi:S0735-1097(04)01700-0
  2. Hoffmann B, Schmidt-Traub H, Perrot A, Osterziel KJ, Gessner R. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat. 2001 Jun;17(6):524. PMID:11385718 doi:10.1002/humu.1143
  3. Schmidtmann A, Lindow C, Villard S, Heuser A, Mugge A, Gessner R, Granier C, Jaquet K. Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C. FEBS J. 2005 Dec;272(23):6087-97. PMID:16302972 doi:10.1111/j.1742-4658.2005.05001.x
  4. Landstrom AP, Parvatiyar MS, Pinto JR, Marquardt ML, Bos JM, Tester DJ, Ommen SR, Potter JD, Ackerman MJ. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol. 2008 Aug;45(2):281-8. doi: 10.1016/j.yjmcc.2008.05.003. Epub , 2008 May 11. PMID:18572189 doi:10.1016/j.yjmcc.2008.05.003
  5. Pinto JR, Parvatiyar MS, Jones MA, Liang J, Ackerman MJ, Potter JD. A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem. 2009 Jul 10;284(28):19090-100. doi: 10.1074/jbc.M109.007021. Epub, 2009 May 12. PMID:19439414 doi:10.1074/jbc.M109.007021
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA