1jem: Difference between revisions

No edit summary
No edit summary
 
Line 1: Line 1:


==NMR STRUCTURE OF HISTIDINE PHOSPHORYLATED FORM OF THE PHOSPHOCARRIER HISTIDINE CONTAINING PROTEIN FROM BACILLUS SUBTILIS, NMR, 25 STRUCTURES==
==NMR STRUCTURE OF HISTIDINE PHOSPHORYLATED FORM OF THE PHOSPHOCARRIER HISTIDINE CONTAINING PROTEIN FROM BACILLUS SUBTILIS, NMR, 25 STRUCTURES==
<StructureSection load='1jem' size='340' side='right'caption='[[1jem]], [[NMR_Ensembles_of_Models | 25 NMR models]]' scene=''>
<StructureSection load='1jem' size='340' side='right'caption='[[1jem]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1jem]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JEM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JEM FirstGlance]. <br>
<table><tr><td colspan='2'>[[1jem]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JEM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JEM FirstGlance]. <br>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=HIP:ND1-PHOSPHONOHISTIDINE'>HIP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HIP:ND1-PHOSPHONOHISTIDINE'>HIP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jem FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jem OCA], [https://pdbe.org/1jem PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jem RCSB], [https://www.ebi.ac.uk/pdbsum/1jem PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jem ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jem FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jem OCA], [https://pdbe.org/1jem PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jem RCSB], [https://www.ebi.ac.uk/pdbsum/1jem PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jem ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/PTHP_BACSU PTHP_BACSU]] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III).<ref>PMID:8195089</ref> <ref>PMID:8596444</ref>  P-Ser-HPr interacts with the catabolite control protein A (CcpA), forming a complex that binds to DNA at the catabolite response elements cre, operator sites preceding a large number of catabolite-regulated genes. Thus, P-Ser-HPr is a corepressor in carbon catabolite repression (CCR), a mechanism that allows bacteria to coordinate and optimize the utilization of available carbon sources. P-Ser-HPr also plays a role in inducer exclusion, in which it probably interacts with several non-PTS permeases and inhibits their transport activity.<ref>PMID:8195089</ref> <ref>PMID:8596444</ref>
[https://www.uniprot.org/uniprot/PTHP_BACSU PTHP_BACSU] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III).<ref>PMID:8195089</ref> <ref>PMID:8596444</ref>  P-Ser-HPr interacts with the catabolite control protein A (CcpA), forming a complex that binds to DNA at the catabolite response elements cre, operator sites preceding a large number of catabolite-regulated genes. Thus, P-Ser-HPr is a corepressor in carbon catabolite repression (CCR), a mechanism that allows bacteria to coordinate and optimize the utilization of available carbon sources. P-Ser-HPr also plays a role in inducer exclusion, in which it probably interacts with several non-PTS permeases and inhibits their transport activity.<ref>PMID:8195089</ref> <ref>PMID:8596444</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 19: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jem ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jem ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The histidine-containing protein (HPr) of bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) serves a central role in a series of phosphotransfer reactions used for the translocation of sugars across cell membranes. These studies report the high-definition solution structures of both the unphosphorylated and histidine phosphorylated (P-His) forms of HPr from Bacillus subtilis. Consistent with previous NMR studies, local conformational adjustments occur upon phosphorylation of His 15, which positions the phosphate group to serve as a hydrogen bond acceptor for the amide protons of Ala 16 and Arg 17 and to interact favorably with the alpha-helix macrodipole. However, the positively charged side chain of the highly conserved Arg 17 does not appear to interact directly with phospho-His 15, suggesting that Arg 17 plays a role in the recognition of other PTS enzymes or in phosphotransfer reactions directly. Unlike the results reported for Escherichia coli P-His HPr (Van Nuland NA, Boelens R, Scheek RM, Robillard GT, 1995, J Mol Biol 246:180-193), our data indicate that phosphorylation of His 15 is not accompanied by adoption of unfavorable backbone conformations for active site residues in B. subtilis P-Ser HPr.
Phosphorylation on histidine is accompanied by localized structural changes in the phosphocarrier protein, HPr from Bacillus subtilis.,Jones BE, Rajagopal P, Klevit RE Protein Sci. 1997 Oct;6(10):2107-19. PMID:9336834<ref>PMID:9336834</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1jem" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 35: Line 27:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Vibrio subtilis ehrenberg 1835]]
[[Category: Bacillus subtilis]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Jones, B E]]
[[Category: Jones BE]]
[[Category: Klevit, R E]]
[[Category: Klevit RE]]
[[Category: Rajagopal, P]]
[[Category: Rajagopal P]]
[[Category: Histidine containing protein]]
[[Category: Phosphohistidine]]
[[Category: Phosphotransferase]]
[[Category: Pt]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA