2gnf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='2gnf' size='340' side='right'caption='[[2gnf]], [[Resolution|resolution]] 2.28&Aring;' scene=''>
<StructureSection load='2gnf' size='340' side='right'caption='[[2gnf]], [[Resolution|resolution]] 2.28&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2gnf]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bovin Bovin]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GNF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2GNF FirstGlance]. <br>
<table><tr><td colspan='2'>[[2gnf]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus] and [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GNF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2GNF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=Y27:(R)-TRANS-4-(1-AMINOETHYL)-N-(4-PYRIDYL)+CYCLOHEXANECARBOXAMIDE'>Y27</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.28&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene>, <scene name='pdbligand=Y27:(R)-TRANS-4-(1-AMINOETHYL)-N-(4-PYRIDYL)+CYCLOHEXANECARBOXAMIDE'>Y27</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1q8t|1q8t]], [[1q8u|1q8u]], [[1q8w|1q8w]], [[2gng|2gng]], [[2gnh|2gnh]], [[2gni|2gni]], [[2gnj|2gnj]], [[2gnl|2gnl]]</div></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PRKACA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9913 BOVIN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/cAMP-dependent_protein_kinase cAMP-dependent protein kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.11 2.7.11.11] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gnf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gnf OCA], [https://pdbe.org/2gnf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gnf RCSB], [https://www.ebi.ac.uk/pdbsum/2gnf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gnf ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gnf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gnf OCA], [https://pdbe.org/2gnf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gnf RCSB], [https://www.ebi.ac.uk/pdbsum/2gnf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gnf ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/KAPCA_BOVIN KAPCA_BOVIN]] Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, TRPC1 and VASP. RORA is activated by phosphorylation. Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP. Prevents the antiproliferative and anti-invasive effects of alpha-difluoromethylornithine in breast cancer cells when activated. RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). TRPC1 activation by phosphorylation promotes Ca(2+) influx, essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. PSMC5/RPT6 activation by phosphorylation stimulates proteasome. Regulates negatively tight junction (TJs) in ovarian cancer cells via CLDN3 phosphorylation. NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding. Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis. Isoform 2 phosphorylates and activates ABL1 in sperm flagellum to promote spermatozoa capacitation. Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation. May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT) (By similarity). [[https://www.uniprot.org/uniprot/IPKA_RABIT IPKA_RABIT]] Extremely potent competitive inhibitor of cAMP-dependent protein kinase activity, this protein interacts with the catalytic subunit of the enzyme after the cAMP-induced dissociation of its regulatory chains.  
[https://www.uniprot.org/uniprot/KAPCA_BOVIN KAPCA_BOVIN] Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, TRPC1 and VASP. RORA is activated by phosphorylation. Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP. Prevents the antiproliferative and anti-invasive effects of alpha-difluoromethylornithine in breast cancer cells when activated. RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). TRPC1 activation by phosphorylation promotes Ca(2+) influx, essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. PSMC5/RPT6 activation by phosphorylation stimulates proteasome. Regulates negatively tight junction (TJs) in ovarian cancer cells via CLDN3 phosphorylation. NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding. Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis. Isoform 2 phosphorylates and activates ABL1 in sperm flagellum to promote spermatozoa capacitation. Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation. May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT) (By similarity).
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 23: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2gnf ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2gnf ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Controlling aberrant kinase-mediated cellular signaling is a major strategy in cancer therapy; successful protein kinase inhibitors such as Tarceva and Gleevec verify this approach. Specificity of inhibitors for the targeted kinase(s), however, is a crucial factor for therapeutic success. Based on homology modeling, we previously identified four amino acids in the active site of Rho-kinase that likely determine inhibitor specificities observed for Rho-kinase relative to protein kinase A (PKA) (in PKA numbering: T183A, L49I, V123M, and E127D), and a fifth (Q181K) that played a surprising role in PKA-PKB hybrid proteins. We have systematically mutated these residues in PKA to their counterparts in Rho-kinase, individually and in combination. Using four Rho-kinase-specific, one PKA-specific, and one pan-kinase-specific inhibitor, we measured the inhibitor-binding properties of the mutated proteins and identify the roles of individual residues as specificity determinants. Two combined mutant proteins, containing the combination of mutations T183A and L49I, closely mimic Rho-kinase. Kinetic results corroborate the hypothesis that side-chain identities form the major determinants of selectivity. An unexpected result of the analysis is the consistent contribution of the individual mutations by simple factors. Crystal structures of the surrogate kinase inhibitor complexes provide a detailed basis for an understanding of these selectivity determinant residues. The ability to obtain kinetic and structural data from these PKA mutants, combined with their Rho-kinase-like selectivity profiles, make them valuable for use as surrogate kinases for structure-based inhibitor design.
Structural analysis of protein kinase A mutants with Rho-kinase inhibitor specificity.,Bonn S, Herrero S, Breitenlechner CB, Erlbruch A, Lehmann W, Engh RA, Gassel M, Bossemeyer D J Biol Chem. 2006 Aug 25;281(34):24818-30. Epub 2006 May 12. PMID:16699172<ref>PMID:16699172</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2gnf" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[CAMP-dependent protein kinase 3D structures|CAMP-dependent protein kinase 3D structures]]
*[[CAMP-dependent protein kinase 3D structures|CAMP-dependent protein kinase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bovin]]
[[Category: Bos taurus]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: CAMP-dependent protein kinase]]
[[Category: Oryctolagus cuniculus]]
[[Category: Bonn, S]]
[[Category: Bonn S]]
[[Category: Bossemeyer, D]]
[[Category: Bossemeyer D]]
[[Category: Breitenlechner, C B]]
[[Category: Breitenlechner CB]]
[[Category: Engh, R A]]
[[Category: Engh RA]]
[[Category: Gassel, M]]
[[Category: Gassel M]]
[[Category: Herrero, S]]
[[Category: Herrero S]]
[[Category: Pka]]
[[Category: Rho-kinase]]
[[Category: Surrogate]]
[[Category: Transferase-transferase inhibitor complex]]
[[Category: Y-27632]]

Revision as of 09:26, 3 April 2024

Protein kinase A fivefold mutant model of Rho-kinase with Y-27632Protein kinase A fivefold mutant model of Rho-kinase with Y-27632

Structural highlights

2gnf is a 2 chain structure with sequence from Bos taurus and Oryctolagus cuniculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.28Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KAPCA_BOVIN Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA, TRPC1 and VASP. RORA is activated by phosphorylation. Required for glucose-mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B-alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP. Prevents the antiproliferative and anti-invasive effects of alpha-difluoromethylornithine in breast cancer cells when activated. RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). TRPC1 activation by phosphorylation promotes Ca(2+) influx, essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. PSMC5/RPT6 activation by phosphorylation stimulates proteasome. Regulates negatively tight junction (TJs) in ovarian cancer cells via CLDN3 phosphorylation. NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding. Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis. Isoform 2 phosphorylates and activates ABL1 in sperm flagellum to promote spermatozoa capacitation. Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation. May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT) (By similarity).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

2gnf, resolution 2.28Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA