1ghu: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:


==NMR solution structure of growth factor receptor-bound protein 2 (GRB2) SH2 domain, 24 structures==
==NMR solution structure of growth factor receptor-bound protein 2 (GRB2) SH2 domain, 24 structures==
<StructureSection load='1ghu' size='340' side='right'caption='[[1ghu]], [[NMR_Ensembles_of_Models | 24 NMR models]]' scene=''>
<StructureSection load='1ghu' size='340' side='right'caption='[[1ghu]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1ghu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GHU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GHU FirstGlance]. <br>
<table><tr><td colspan='2'>[[1ghu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GHU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GHU FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ghu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ghu OCA], [https://pdbe.org/1ghu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ghu RCSB], [https://www.ebi.ac.uk/pdbsum/1ghu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ghu ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ghu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ghu OCA], [https://pdbe.org/1ghu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ghu RCSB], [https://www.ebi.ac.uk/pdbsum/1ghu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ghu ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/GRB2_HUMAN GRB2_HUMAN]] Adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway.<ref>PMID:1322798</ref> <ref>PMID:8178156</ref> <ref>PMID:19815557</ref>  Isoform 2 does not bind to phosphorylated epidermal growth factor receptor (EGFR) but inhibits EGF-induced transactivation of a RAS-responsive element. Isoform 2 acts as a dominant negative protein over GRB2 and by suppressing proliferative signals, may trigger active programmed cell death.<ref>PMID:1322798</ref> <ref>PMID:8178156</ref> <ref>PMID:19815557</ref>
[https://www.uniprot.org/uniprot/GRB2_HUMAN GRB2_HUMAN] Adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway.<ref>PMID:1322798</ref> <ref>PMID:8178156</ref> <ref>PMID:19815557</ref>  Isoform 2 does not bind to phosphorylated epidermal growth factor receptor (EGFR) but inhibits EGF-induced transactivation of a RAS-responsive element. Isoform 2 acts as a dominant negative protein over GRB2 and by suppressing proliferative signals, may trigger active programmed cell death.<ref>PMID:1322798</ref> <ref>PMID:8178156</ref> <ref>PMID:19815557</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 18: Line 19:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ghu ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ghu ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A family of NMR solution structures of the growth factor receptor-bound protein 2 (Grb2) SH2 domain has been determined by heteronuclear multidimensional NMR. Proton, nitrogen, and carbon chemical shift assignments have been made for the SH2 domain of Grb2. Assignments were made from a combination of homonuclear two-dimensional and 15N- and 13C-edited three-dimensional spectra at pH 6.2 and 298 K. Structure-induced proton and carbon secondary shifts were calculated and used to facilitate the spectral assignment process. NOE, scalar coupling, secondary chemical shift, and amide proton exchange data were used to characterize the secondary structural elements and hydrogen-bonding network in the Grb2 SH2 domain. The three-dimensional structure of the Grb2 SH2 domain was calculated using 1112 restraints obtained from NOE, coupling constant, and amide proton exchange data. The rmsd for the 24 calculated structures to the mean structure of the Grb2 SH2 domain was 0.75 A for backbone and 1.28 A for all heavy atoms. The three-dimensional fold of the Grb2 SH2 domain is similar to that observed for other SH2 domains and consists of two alpha-helical segments and eight beta-strands, six strands that make up two contiguous antiparallel beta-sheets, and two strands that form two short parallel beta-sheets. The structure of the phosphotyrosine binding pocket of Grb2 is similar to that observed for other SH2 domains. The hydrophobic binding pocket of Grb2 is similar to that observed for Src with the exception that tryptophan 121 of Grb2 occupies part of the pY+3 binding pocket. Structural implications for the Grb2 SH2 domain selectivity at the pY+2 and pY+3 sites are discussed.
Nuclear magnetic resonance solution structure of the growth factor receptor-bound protein 2 Src homology 2 domain.,Thornton KH, Mueller WT, McConnell P, Zhu G, Saltiel AR, Thanabal V Biochemistry. 1996 Sep 10;35(36):11852-64. PMID:8794768<ref>PMID:8794768</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1ghu" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 34: Line 26:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Mcconnell, P]]
[[Category: Mcconnell P]]
[[Category: Mueller, W T]]
[[Category: Mueller WT]]
[[Category: Saltiel, A R]]
[[Category: Saltiel AR]]
[[Category: Thanabal, V]]
[[Category: Thanabal V]]
[[Category: Thornton, K H]]
[[Category: Thornton KH]]
[[Category: Zhu, G]]
[[Category: Zhu G]]
[[Category: Grb2]]
[[Category: Sh2]]
[[Category: Src homology 2 domain]]

Revision as of 14:21, 27 March 2024

NMR solution structure of growth factor receptor-bound protein 2 (GRB2) SH2 domain, 24 structuresNMR solution structure of growth factor receptor-bound protein 2 (GRB2) SH2 domain, 24 structures

Structural highlights

1ghu is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GRB2_HUMAN Adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway.[1] [2] [3] Isoform 2 does not bind to phosphorylated epidermal growth factor receptor (EGFR) but inhibits EGF-induced transactivation of a RAS-responsive element. Isoform 2 acts as a dominant negative protein over GRB2 and by suppressing proliferative signals, may trigger active programmed cell death.[4] [5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992 Aug 7;70(3):431-42. PMID:1322798
  2. Fath I, Schweighoffer F, Rey I, Multon MC, Boiziau J, Duchesne M, Tocque B. Cloning of a Grb2 isoform with apoptotic properties. Science. 1994 May 13;264(5161):971-4. PMID:8178156
  3. Pao-Chun L, Chan PM, Chan W, Manser E. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem. 2009 Dec 11;284(50):34954-63. doi: 10.1074/jbc.M109.072660. Epub, 2009 Oct 8. PMID:19815557 doi:10.1074/jbc.M109.072660
  4. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992 Aug 7;70(3):431-42. PMID:1322798
  5. Fath I, Schweighoffer F, Rey I, Multon MC, Boiziau J, Duchesne M, Tocque B. Cloning of a Grb2 isoform with apoptotic properties. Science. 1994 May 13;264(5161):971-4. PMID:8178156
  6. Pao-Chun L, Chan PM, Chan W, Manser E. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem. 2009 Dec 11;284(50):34954-63. doi: 10.1074/jbc.M109.072660. Epub, 2009 Oct 8. PMID:19815557 doi:10.1074/jbc.M109.072660
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA