1dyf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='1dyf' size='340' side='right'caption='[[1dyf]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
<StructureSection load='1dyf' size='340' side='right'caption='[[1dyf]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1dyf]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bpt4 Bpt4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DYF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1DYF FirstGlance]. <br>
<table><tr><td colspan='2'>[[1dyf]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DYF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1DYF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1dyf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dyf OCA], [https://pdbe.org/1dyf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1dyf RCSB], [https://www.ebi.ac.uk/pdbsum/1dyf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1dyf ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1dyf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dyf OCA], [https://pdbe.org/1dyf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1dyf RCSB], [https://www.ebi.ac.uk/pdbsum/1dyf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1dyf ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/LYS_BPT4 LYS_BPT4]] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan.  
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dyf ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dyf ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
To determine the effects of different amino acids on the structure and stability of an alpha-helix in the context of a globular protein, all 19 naturally-occurring amino acids were substituted for Ser44 in phage T4 lysozyme. A more restricted set of nine replacements was also made for Val131. Ser44 and Val131 are two of a very limited number of possible sites in T4 lysozyme that are well within alpha-helices, are solvent-exposed and relatively free of interactions with neighboring residues, and are not involved in crystal contacts. High resolution structures for the majority of the mutants, some of which crystallized non-isomorphously with wild-type, were determined. With the exception of proline, the amino acid substitutions caused little if any perturbation of the alpha-helix backbone. Also the beta-branched residues Thr, Val and Ile show no indication of either side-chain or backbone distortion. Therefore, other than proline, there is no evidence that differences in helix propensities are associated with different amounts of strain introduced into the helix. For reference, and also to allow estimates of side-chain entropy, a survey was made of side-chain conformations in 100 well-refined protein structures. As noted previously all side-chains within alpha-helices strongly avoid the g- conformation (chi 1 approximately 60 degrees). This restricts the beta-branched residues Thr, Val and Ile to a single conformer (g+, chi 1 approximately -60 degrees). Asp, Asn, Met and Ser within helices also overwhelmingly prefer the g+ conformation. For Arg, Cys, Gln, Glu, Leu and Lys the t (chi 1 approximately 180 degrees) and g+ conformers are populated roughly equally. Only the aromatic residues, His, Tyr, Trp and Phe prefer the t conformation. These preferences are the same whether the side-chain is buried or solvent-exposed. In general, the side-chain conformations adopted by the residues substituted at positions 44 and 131 correspond to the most commonly observed conformation for the same amino acid in helices in known protein structures. The changes in protein stability for the replacements at site 131 in general agree well with those at site 44 (correlation r = 0.97), suggesting that these may be representative of substitutions at fully solvent-exposed sites in the middle of alpha-helices. The free energy values also agree quite well with those observed for equivalent replacements in a number of soluble alpha-helical model peptides and with data from "host-guest" studies and statistical surveys (r = 0.69 to 0.93).(ABSTRACT TRUNCATED AT 400 WORDS)
Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.,Blaber M, Zhang XJ, Lindstrom JD, Pepiot SD, Baase WA, Matthews BW J Mol Biol. 1994 Jan 14;235(2):600-24. PMID:8289284<ref>PMID:8289284</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1dyf" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 36: Line 27:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bpt4]]
[[Category: Escherichia virus T4]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Lysozyme]]
[[Category: Matthews BW]]
[[Category: Matthews, B W]]
[[Category: Zhou H-J]]
[[Category: Zhou, H J]]

Latest revision as of 12:55, 20 March 2024

DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYMEDETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYME

Structural highlights

1dyf is a 1 chain structure with sequence from Escherichia virus T4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042

1dyf, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA