4fmu: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4fmu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FMU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FMU FirstGlance]. <br>
<table><tr><td colspan='2'>[[4fmu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FMU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FMU FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0UM:(2S,5S)-2-AMINO-6-[(2R,3S,4R,5R)-5-(6-AMINO-9H-PURIN-9-YL)-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL]-5-(PROPYLAMINO)HEXANOIC+ACID'>0UM</scene>, <scene name='pdbligand=UNX:UNKNOWN+ATOM+OR+ION'>UNX</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0UM:(2S,5S)-2-AMINO-6-[(2R,3S,4R,5R)-5-(6-AMINO-9H-PURIN-9-YL)-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL]-5-(PROPYLAMINO)HEXANOIC+ACID'>0UM</scene>, <scene name='pdbligand=UNX:UNKNOWN+ATOM+OR+ION'>UNX</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fmu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fmu OCA], [https://pdbe.org/4fmu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fmu RCSB], [https://www.ebi.ac.uk/pdbsum/4fmu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fmu ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fmu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fmu OCA], [https://pdbe.org/4fmu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fmu RCSB], [https://www.ebi.ac.uk/pdbsum/4fmu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fmu ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/SETD2_HUMAN SETD2_HUMAN] Histone methyltransferase that methylates 'Lys-36' of histone H3. H3 'Lys-36' methylation represents a specific tag for epigenetic transcriptional activation. Probably plays a role in chromatin structure modulation during elongation via its interaction with hyperphosphorylated POLR2A. Binds DNA at promoters. May also act as a transcription activator that binds to promoters. Binds to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression.<ref>PMID:16118227</ref>  
[https://www.uniprot.org/uniprot/SETD2_HUMAN SETD2_HUMAN] Histone methyltransferase that methylates 'Lys-36' of histone H3. H3 'Lys-36' methylation represents a specific tag for epigenetic transcriptional activation. Probably plays a role in chromatin structure modulation during elongation via its interaction with hyperphosphorylated POLR2A. Binds DNA at promoters. May also act as a transcription activator that binds to promoters. Binds to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression.<ref>PMID:16118227</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Epigenetic regulations are involved in numerous physiological and pathogenic processes. Among the key regulators that orchestrate epigenetic signaling are over 50 human protein lysine methyltransferases (PKMTs). Interrogating the functions of individual PKMTs can be facilitated by target-specific PKMT inhibitors. Given the emerging need of such small molecules, we envision an approach to identify target-specific methyltransferase inhibitors by screening privileged small-molecule scaffolds against diverse methyltransferases. Here we demonstrate such feasibility by identifying the inhibitors of SETD2. N-propyl sinefungin (Pr-SNF) was shown to preferentially interact with SETD2 by matching the distinct transition-state features of SETD2's catalytically-active conformer. With Pr-SNF as a structure probe, we further revealed the dual roles of SETD2's post-SET loop on regulating substrate access through a distinct topological reconfiguration. Privileged sinefungin scaffolds are expected to have broad use as structure and chemical probes of methyltransferases.
Sinefungin Derivatives as Inhibitors and Structure Probes of Protein Lysine Methyltransferase SETD2.,Zheng W, Ibanez G, Wu H, Blum G, Zeng H, Dong A, Li F, Hajian T, Allali-Hassani A, Amaya MF, Siarheyeva A, Yu W, Brown PJ, Schapira M, Vedadi M, Min J, Luo M J Am Chem Soc. 2012 Oct 8. PMID:23043551<ref>PMID:23043551</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4fmu" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Latest revision as of 18:29, 14 March 2024

Crystal structure of Methyltransferase domain of human SET domain-containing protein 2 Compound: Pr-SNFCrystal structure of Methyltransferase domain of human SET domain-containing protein 2 Compound: Pr-SNF

Structural highlights

4fmu is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SETD2_HUMAN Histone methyltransferase that methylates 'Lys-36' of histone H3. H3 'Lys-36' methylation represents a specific tag for epigenetic transcriptional activation. Probably plays a role in chromatin structure modulation during elongation via its interaction with hyperphosphorylated POLR2A. Binds DNA at promoters. May also act as a transcription activator that binds to promoters. Binds to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression.[1]

See Also

References

  1. Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem. 2005 Oct 21;280(42):35261-71. Epub 2005 Aug 22. PMID:16118227 doi:http://dx.doi.org/M504012200

4fmu, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA