4fcp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4fcp]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FCP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FCP FirstGlance]. <br>
<table><tr><td colspan='2'>[[4fcp]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FCP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FCP FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=42C:N,N-DIMETHYL-7H-PURIN-6-AMINE'>42C</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=42C:N,N-DIMETHYL-7H-PURIN-6-AMINE'>42C</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fcp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fcp OCA], [https://pdbe.org/4fcp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fcp RCSB], [https://www.ebi.ac.uk/pdbsum/4fcp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fcp ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fcp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fcp OCA], [https://pdbe.org/4fcp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fcp RCSB], [https://www.ebi.ac.uk/pdbsum/4fcp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fcp ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/HS90A_HUMAN HS90A_HUMAN] Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.<ref>PMID:15937123</ref> <ref>PMID:11274138</ref>  
[https://www.uniprot.org/uniprot/HS90A_HUMAN HS90A_HUMAN] Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.<ref>PMID:15937123</ref> <ref>PMID:11274138</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Inhibitors of the Hsp90 molecular chaperone are showing promise as anti-cancer agents. Here we describe a series of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors that were identified following structure-driven optimization of purine hits revealed by NMR based screening of a proprietary fragment library. Ligand-Hsp90 X-ray structures combined with molecular modeling led to the rational displacement of a conserved water molecule leading to enhanced affinity for Hsp90 as measured by fluorescence polarization, isothermal titration calorimetry and surface plasmon resonance assays. This displacement was achieved with a nitrile group, presenting an example of efficient gain in binding affinity with minimal increase in molecular weight. Some compounds in this chemical series inhibit the proliferation of human cancer cell lines in vitro and cause depletion of oncogenic Hsp90 client proteins and concomitant elevation of the co-chaperone Hsp70. In addition, one compound was demonstrated to be orally bioavailable in the mouse. This work demonstrates the power of structure-based design for the rapid evolution of potent Hsp90 inhibitors and the importance of considering conserved water molecules in drug design.
Targeting conserved water molecules: Design of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine Hsp90 inhibitors using fragment-based screening and structure-based optimization.,Davies NG, Browne H, Davis B, Drysdale MJ, Foloppe N, Geoffrey S, Gibbons B, Hart T, Hubbard R, Jensen MR, Mansell H, Massey A, Matassova N, Moore JD, Murray J, Pratt R, Ray S, Robertson A, Roughley SD, Schoepfer J, Scriven K, Simmonite H, Stokes S, Surgenor A, Webb P, Wood M, Wright L, Brough P Bioorg Med Chem. 2012 Nov 15;20(22):6770-89. doi: 10.1016/j.bmc.2012.08.050. Epub, 2012 Sep 4. PMID:23018093<ref>PMID:23018093</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4fcp" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Latest revision as of 18:21, 14 March 2024

Targetting conserved water molecules: Design of 4-aryl-5-cyanopyrrolo [2,3-d] pyrimidine Hsp90 inhibitors using fragment-based screening and structure-based optimizationTargetting conserved water molecules: Design of 4-aryl-5-cyanopyrrolo [2,3-d] pyrimidine Hsp90 inhibitors using fragment-based screening and structure-based optimization

Structural highlights

4fcp is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HS90A_HUMAN Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.[1] [2]

See Also

References

  1. Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8525-30. Epub 2005 Jun 3. PMID:15937123 doi:10.1073/pnas.0407294102
  2. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001 May 11;276(19):15571-4. Epub 2001 Mar 23. PMID:11274138 doi:10.1074/jbc.C100055200

4fcp, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA