4f63: Difference between revisions

No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4f63]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F63 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4F63 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4f63]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F63 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4F63 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0S7:5-BROMO-N~4~-(3-METHYL-1H-PYRAZOL-5-YL)-N~2~-[2-(PYRIDIN-3-YL)ETHYL]PYRIMIDINE-2,4-DIAMINE'>0S7</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.55&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0S7:5-BROMO-N~4~-(3-METHYL-1H-PYRAZOL-5-YL)-N~2~-[2-(PYRIDIN-3-YL)ETHYL]PYRIMIDINE-2,4-DIAMINE'>0S7</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4f63 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4f63 OCA], [https://pdbe.org/4f63 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4f63 RCSB], [https://www.ebi.ac.uk/pdbsum/4f63 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4f63 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4f63 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4f63 OCA], [https://pdbe.org/4f63 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4f63 RCSB], [https://www.ebi.ac.uk/pdbsum/4f63 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4f63 ProSAT]</span></td></tr>
</table>
</table>
Line 11: Line 12:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/FGFR1_HUMAN FGFR1_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation.<ref>PMID:20139426</ref> <ref>PMID:1379697</ref> <ref>PMID:1379698</ref> <ref>PMID:8622701</ref> <ref>PMID:8663044</ref> <ref>PMID:11353842</ref> <ref>PMID:12181353</ref> <ref>PMID:15117958</ref> <ref>PMID:16597617</ref> <ref>PMID:17623664</ref> <ref>PMID:17311277</ref> <ref>PMID:18480409</ref> <ref>PMID:19261810</ref> <ref>PMID:19224897</ref> <ref>PMID:21765395</ref> <ref>PMID:10830168</ref> <ref>PMID:19665973</ref> <ref>PMID:20133753</ref>  
[https://www.uniprot.org/uniprot/FGFR1_HUMAN FGFR1_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation.<ref>PMID:20139426</ref> <ref>PMID:1379697</ref> <ref>PMID:1379698</ref> <ref>PMID:8622701</ref> <ref>PMID:8663044</ref> <ref>PMID:11353842</ref> <ref>PMID:12181353</ref> <ref>PMID:15117958</ref> <ref>PMID:16597617</ref> <ref>PMID:17623664</ref> <ref>PMID:17311277</ref> <ref>PMID:18480409</ref> <ref>PMID:19261810</ref> <ref>PMID:19224897</ref> <ref>PMID:21765395</ref> <ref>PMID:10830168</ref> <ref>PMID:19665973</ref> <ref>PMID:20133753</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The design of compounds that selectively inhibit a single kinase is a significant challenge, particularly for compounds that bind to the ATP site. We describe here how protein-ligand crystal structure information was able both to rationalize observed selectivity and to guide the design of more selective compounds. Inhibition data from enzyme and cellular screens and the crystal structures of a range of ligands tested during the process of identifying selective inhibitors of FGFR provide a step-by-step illustration of the process. Steric effects were exploited by increasing the size of ligands in specific regions in such a way as to be tolerated in the primary target and not in other related kinases. Kinases are an excellent target class to exploit such approaches because of the conserved fold and small side chain mobility of the active form.
Protein-Ligand Crystal Structures Can Guide the Design of Selective Inhibitors of the FGFR Tyrosine Kinase.,Norman RA, Schott AK, Andrews DM, Breed J, Foote KM, Garner AP, Ogg D, Orme JP, Pink JH, Roberts K, Rudge DA, Thomas AP, Leach AG J Med Chem. 2012 May 21. PMID:22612866<ref>PMID:22612866</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4f63" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA