4ez5: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4ez5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EZ5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4EZ5 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4ez5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EZ5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4EZ5 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0RS:{5-[4-(DIMETHYLAMINO)PIPERIDIN-1-YL]-1H-IMIDAZO[4,5-B]PYRIDIN-2-YL}[2-(ISOQUINOLIN-4-YL)PYRIDIN-4-YL]METHANONE'>0RS</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0RS:{5-[4-(DIMETHYLAMINO)PIPERIDIN-1-YL]-1H-IMIDAZO[4,5-B]PYRIDIN-2-YL}[2-(ISOQUINOLIN-4-YL)PYRIDIN-4-YL]METHANONE'>0RS</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ez5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ez5 OCA], [https://pdbe.org/4ez5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ez5 RCSB], [https://www.ebi.ac.uk/pdbsum/4ez5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ez5 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ez5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ez5 OCA], [https://pdbe.org/4ez5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ez5 RCSB], [https://www.ebi.ac.uk/pdbsum/4ez5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ez5 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/CDK6_HUMAN CDK6_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans.<ref>PMID:8114739</ref> <ref>PMID:12833137</ref> <ref>PMID:14985467</ref> <ref>PMID:15254224</ref> <ref>PMID:15809340</ref> <ref>PMID:17431401</ref> <ref>PMID:17420273</ref> <ref>PMID:20668294</ref> <ref>PMID:20333249</ref>  
[https://www.uniprot.org/uniprot/CDK6_HUMAN CDK6_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans.<ref>PMID:8114739</ref> <ref>PMID:12833137</ref> <ref>PMID:14985467</ref> <ref>PMID:15254224</ref> <ref>PMID:15809340</ref> <ref>PMID:17431401</ref> <ref>PMID:17420273</ref> <ref>PMID:20668294</ref> <ref>PMID:20333249</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Herein, we describe the discovery of potent and highly selective inhibitors of both CDK4 and CDK6 via structure-guided optimization of a fragment-based screening hit. CDK6 X-ray crystallography and pharmacokinetic data steered efforts in identifying compound 6, which showed &gt;1000-fold selectivity for CDK4 over CDKs 1 and 2 in an enzymatic assay. Furthermore, 6 demonstrated in vivo inhibition of pRb-phosphorylation and oral efficacy in a Jeko-1 mouse xenograft model.
Fragment-Based Discovery of 7-Azabenzimidazoles as Potent, Highly Selective, and Orally Active CDK4/6 Inhibitors.,Cho YS, Angove H, Brain C, Chen CH, Cheng H, Cheng R, Chopra R, Chung K, Congreve M, Dagostin C, Davis DJ, Feltell R, Giraldes J, Hiscock SD, Kim S, Kovats S, Lagu B, Lewry K, Loo A, Lu Y, Luzzio M, Maniara W, McMenamin R, Mortenson PN, Benning R, O'Reilly M, Rees DC, Shen J, Smith T, Wang Y, Williams G, Woolford AJ, Wrona W, Xu M, Yang F, Howard S ACS Med Chem Lett. 2012 May 17;3(6):445-9. doi: 10.1021/ml200241a. eCollection, 2012 Jun 14. PMID:24900493<ref>PMID:24900493</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4ez5" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Latest revision as of 18:12, 14 March 2024

CDK6 (monomeric) in complex with inhibitorCDK6 (monomeric) in complex with inhibitor

Structural highlights

4ez5 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CDK6_HUMAN Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans.[1] [2] [3] [4] [5] [6] [7] [8] [9]

See Also

References

  1. Meyerson M, Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol. 1994 Mar;14(3):2077-86. PMID:8114739
  2. Matushansky I, Radparvar F, Skoultchi AI. CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene. 2003 Jul 3;22(27):4143-9. PMID:12833137 doi:10.1038/sj.onc.1206484
  3. Lucas JJ, Domenico J, Gelfand EW. Cyclin-dependent kinase 6 inhibits proliferation of human mammary epithelial cells. Mol Cancer Res. 2004 Feb;2(2):105-14. PMID:14985467
  4. Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, Itaka K, Takato T, Nakamura K, Okayama H. Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol Cell Biol. 2004 Aug;24(15):6560-8. PMID:15254224 doi:10.1128/MCB.24.15.6560-6568.2004
  5. Takaki T, Fukasawa K, Suzuki-Takahashi I, Semba K, Kitagawa M, Taya Y, Hirai H. Preferences for phosphorylation sites in the retinoblastoma protein of D-type cyclin-dependent kinases, Cdk4 and Cdk6, in vitro. J Biochem. 2005 Mar;137(3):381-6. PMID:15809340 doi:10.1093/jb/mvi050
  6. Fujimoto T, Anderson K, Jacobsen SE, Nishikawa SI, Nerlov C. Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction. EMBO J. 2007 May 2;26(9):2361-70. Epub 2007 Apr 12. PMID:17431401 doi:10.1038/sj.emboj.7601675
  7. Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J, Brookes S, Peters G. CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms. Mol Cell Biol. 2007 Jun;27(12):4273-82. Epub 2007 Apr 9. PMID:17420273 doi:10.1128/MCB.02286-06
  8. Fiaschi-Taesch NM, Salim F, Kleinberger J, Troxell R, Cozar-Castellano I, Selk K, Cherok E, Takane KK, Scott DK, Stewart AF. Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes. 2010 Aug;59(8):1926-36. doi: 10.2337/db09-1776. PMID:20668294 doi:10.2337/db09-1776
  9. Sarek G, Jarviluoma A, Moore HM, Tojkander S, Vartia S, Biberfeld P, Laiho M, Ojala PM. Nucleophosmin phosphorylation by v-cyclin-CDK6 controls KSHV latency. PLoS Pathog. 2010 Mar 19;6(3):e1000818. doi: 10.1371/journal.ppat.1000818. PMID:20333249 doi:10.1371/journal.ppat.1000818

4ez5, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA