4e0c: Difference between revisions

No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4e0c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Francisella_tularensis_subsp._tularensis_SCHU_S4 Francisella tularensis subsp. tularensis SCHU S4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4E0C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4E0C FirstGlance]. <br>
<table><tr><td colspan='2'>[[4e0c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Francisella_tularensis_subsp._tularensis_SCHU_S4 Francisella tularensis subsp. tularensis SCHU S4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4E0C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4E0C FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4e0c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4e0c OCA], [https://pdbe.org/4e0c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4e0c RCSB], [https://www.ebi.ac.uk/pdbsum/4e0c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4e0c ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4e0c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4e0c OCA], [https://pdbe.org/4e0c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4e0c RCSB], [https://www.ebi.ac.uk/pdbsum/4e0c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4e0c ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/Q5NFX0_FRATT Q5NFX0_FRATT]] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway (By similarity).[RuleBase:RU004155][SAAS:SAAS004730_004_006516]
[https://www.uniprot.org/uniprot/Q5NFX0_FRATT Q5NFX0_FRATT] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway (By similarity).[RuleBase:RU004155][SAAS:SAAS004730_004_006516]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The Burgi-Dunitz angle (alphaBD) describes the trajectory of approach of a nucleophile to an electrophile. The adoption of a stereoelectronically favorable alphaBD can necessitate significant reactive-group repositioning over the course of bond formation. In the context of enzyme catalysis, interactions with the protein constrain substrate rotation, which could necessitate structural transformations during bond formation. To probe this theoretical framework vis-a-vis biocatalysis, Schiff-base formation was analysed in Francisella tularensis transaldolase (TAL). Crystal structures of wild-type and Lys--&gt;Met mutant TAL in covalent and noncovalent complexes with fructose 6-phosphate and sedoheptulose 7-phosphate clarify the mechanism of catalysis and reveal that substrate keto moieties undergo significant conformational changes during Schiff-base formation. Structural changes compelled by the trajectory considerations discussed here bear relevance to bond formation in a variety of constrained enzymic/engineered systems and can inform the design of covalent therapeutics.
 
Adherence to Burgi-Dunitz stereochemical principles requires significant structural rearrangements in Schiff-base formation: insights from transaldolase complexes.,Light SH, Minasov G, Duban ME, Anderson WF Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):544-52. doi:, 10.1107/S1399004713030666. Epub 2014 Jan 31. PMID:24531488<ref>PMID:24531488</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4e0c" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Transaldolase 3D structures|Transaldolase 3D structures]]
*[[Transaldolase 3D structures|Transaldolase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA