3v8w: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3v8w' size='340' side='right'caption='[[3v8w]], [[Resolution|resolution]] 2.27&Aring;' scene=''>
<StructureSection load='3v8w' size='340' side='right'caption='[[3v8w]], [[Resolution|resolution]] 2.27&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3v8w]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3V8W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3V8W FirstGlance]. <br>
<table><tr><td colspan='2'>[[3v8w]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3V8W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3V8W FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0G2:3-[2-(5-PHENYL-2H-THIENO[3,2-C]PYRAZOL-3-YL)-1H-INDOL-6-YL]PENTAN-3-OL'>0G2</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.27&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3v5l|3v5l]], [[3v8t|3v8t]], [[3vf8|3vf8]], [[3vf9|3vf9]], [[3v5j|3v5j]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=0G2:3-[2-(5-PHENYL-2H-THIENO[3,2-C]PYRAZOL-3-YL)-1H-INDOL-6-YL]PENTAN-3-OL'>0G2</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ITK, EMT, LYK ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3v8w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3v8w OCA], [https://pdbe.org/3v8w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3v8w RCSB], [https://www.ebi.ac.uk/pdbsum/3v8w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3v8w ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3v8w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3v8w OCA], [https://pdbe.org/3v8w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3v8w RCSB], [https://www.ebi.ac.uk/pdbsum/3v8w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3v8w ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/ITK_HUMAN ITK_HUMAN]] Defects in ITK are the cause of lymphoproliferative syndrome EBV-associated autosomal type 1 (LPSA1) [MIM:[https://omim.org/entry/613011 613011]]. LPSA1 is a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus (EBV). Inadequate immune response to EBV can have a fatal outcome. Clinical features include splenomegaly, lymphadenopathy, anemia, thrombocytopenia, pancytopenia, recurrent infections. There is an increased risk for lymphoma.<ref>PMID:19425169</ref>
[https://www.uniprot.org/uniprot/ITK_HUMAN ITK_HUMAN] Defects in ITK are the cause of lymphoproliferative syndrome EBV-associated autosomal type 1 (LPSA1) [MIM:[https://omim.org/entry/613011 613011]. LPSA1 is a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus (EBV). Inadequate immune response to EBV can have a fatal outcome. Clinical features include splenomegaly, lymphadenopathy, anemia, thrombocytopenia, pancytopenia, recurrent infections. There is an increased risk for lymphoma.<ref>PMID:19425169</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/ITK_HUMAN ITK_HUMAN]] Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation.<ref>PMID:12186560</ref> <ref>PMID:12682224</ref> <ref>PMID:21725281</ref
[https://www.uniprot.org/uniprot/ITK_HUMAN ITK_HUMAN] Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation.<ref>PMID:12186560</ref> <ref>PMID:12682224</ref> <ref>PMID:21725281</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Beginning with a screening hit, unique thienopyrazole-indole inhibitors of Itk (interleukin-2-inducible tyrosine kinase) were designed, synthesized, and crystallized in the target kinase. Although initial compounds were highly active in Itk, they were not selective. Increasing the steric bulk around a tertiary alcohol at the 5-indole position dramatically improved selectivity toward Lyk and Syk, but not Txk. Substitutions at the 3- and 4-indole positions gave less active compounds that remained poorly selective. A difluoromethyl substitution at the 5-position of the thienopyrazole led to a highly potent and selective compound. Phenyl at this position reduced activity and selectivity while pushing the side-chains of Lys-391 and Asp-500 away from the binding pocket. Novel and selective thienopyrazole inhibitors of Itk were designed as a result of combining structure-based design and medicinal chemistry.
 
X-ray crystallographic structure-based design of selective thienopyrazole inhibitors for interleukin-2-inducible tyrosine kinase.,McLean LR, Zhang Y, Zaidi N, Bi X, Wang R, Dharanipragada R, Jurcak JG, Gillespy TA, Zhao Z, Musick KY, Choi YM, Barrague M, Peppard J, Smicker M, Duguid M, Parkar A, Fordham J, Kominos D Bioorg Med Chem Lett. 2012 May 1;22(9):3296-300. Epub 2012 Mar 11. PMID:22464456<ref>PMID:22464456</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3v8w" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 30: Line 19:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Non-specific protein-tyrosine kinase]]
[[Category: McLean LR]]
[[Category: McLean, L R]]
[[Category: Zhang Y]]
[[Category: Zhang, Y]]
[[Category: Kinase]]
[[Category: Transferase-transferase inhibitor complex]]

Latest revision as of 17:21, 14 March 2024

Crystal Structure of Interleukin-2 Inducible T-cell Kinase Itk Catalytic Domain with Thienopyrazolylindole Inhibitor 469Crystal Structure of Interleukin-2 Inducible T-cell Kinase Itk Catalytic Domain with Thienopyrazolylindole Inhibitor 469

Structural highlights

3v8w is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.27Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ITK_HUMAN Defects in ITK are the cause of lymphoproliferative syndrome EBV-associated autosomal type 1 (LPSA1) [MIM:613011. LPSA1 is a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus (EBV). Inadequate immune response to EBV can have a fatal outcome. Clinical features include splenomegaly, lymphadenopathy, anemia, thrombocytopenia, pancytopenia, recurrent infections. There is an increased risk for lymphoma.[1]

Function

ITK_HUMAN Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation.[2] [3] [4]

See Also

References

  1. Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N, Laws HJ, Telieps T, Knapp S, Wacker HH, Meindl A, Jumaa H, Borkhardt A. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009 May;119(5):1350-8. PMID:19425169
  2. Perez-Villar JJ, Whitney GS, Sitnick MT, Dunn RJ, Venkatesan S, O'Day K, Schieven GL, Lin TA, Kanner SB. Phosphorylation of the linker for activation of T-cells by Itk promotes recruitment of Vav. Biochemistry. 2002 Aug 27;41(34):10732-40. PMID:12186560
  3. Grasis JA, Browne CD, Tsoukas CD. Inducible T cell tyrosine kinase regulates actin-dependent cytoskeletal events induced by the T cell antigen receptor. J Immunol. 2003 Apr 15;170(8):3971-6. PMID:12682224
  4. Sela M, Bogin Y, Beach D, Oellerich T, Lehne J, Smith-Garvin JE, Okumura M, Starosvetsky E, Kosoff R, Libman E, Koretzky G, Kambayashi T, Urlaub H, Wienands J, Chernoff J, Yablonski D. Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells. EMBO J. 2011 Jul 1;30(15):3160-72. doi: 10.1038/emboj.2011.213. PMID:21725281 doi:10.1038/emboj.2011.213

3v8w, resolution 2.27Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA