3qfs: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3qfs' size='340' side='right'caption='[[3qfs]], [[Resolution|resolution]] 1.40&Aring;' scene=''>
<StructureSection load='3qfs' size='340' side='right'caption='[[3qfs]], [[Resolution|resolution]] 1.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3qfs]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3QFS FirstGlance]. <br>
<table><tr><td colspan='2'>[[3qfs]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3QFS FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3qe2|3qe2]], [[3qfc|3qfc]], [[3qfr|3qfr]], [[3qft|3qft]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">POR, CYPOR ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/NADPH--hemoprotein_reductase NADPH--hemoprotein reductase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.6.2.4 1.6.2.4] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3qfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qfs OCA], [https://pdbe.org/3qfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3qfs RCSB], [https://www.ebi.ac.uk/pdbsum/3qfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3qfs ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3qfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qfs OCA], [https://pdbe.org/3qfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3qfs RCSB], [https://www.ebi.ac.uk/pdbsum/3qfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3qfs ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/NCPR_HUMAN NCPR_HUMAN]] Defects in POR are the cause of Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis (ABS1) [MIM:[https://omim.org/entry/201750 201750]]. A disease characterized by the association of Antley-Bixler syndrome with steroidogenesis defects and abnormal genitalia. Antley-Bixler syndrome is characterized by craniosynostosis, radiohumeral synostosis present from the perinatal period, midface hypoplasia, choanal stenosis or atresia, femoral bowing and multiple joint contractures.<ref>PMID:15264278</ref> <ref>PMID:15483095</ref> <ref>PMID:14758361</ref>  Defects in POR are the cause of disordered steroidogenesis due to cytochrome P450 oxidoreductase deficiency (DISPORD) [MIM:[https://omim.org/entry/613571 613571]]. A disorder resulting in a rare variant of congenital adrenal hyperplasia, with apparent combined P450C17 and P450C21 deficiency and accumulation of steroid metabolites. Affected girls are born with ambiguous genitalia, but their circulating androgens are low and virilization does not progress. Conversely, affected boys are sometimes born undermasculinized. Boys and girls can present with bone malformations, in some cases resembling the pattern seen in patients with Antley-Bixler syndrome.<ref>PMID:14758361</ref> <ref>PMID:15220035</ref>
[https://www.uniprot.org/uniprot/NCPR_HUMAN NCPR_HUMAN] Defects in POR are the cause of Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis (ABS1) [MIM:[https://omim.org/entry/201750 201750]. A disease characterized by the association of Antley-Bixler syndrome with steroidogenesis defects and abnormal genitalia. Antley-Bixler syndrome is characterized by craniosynostosis, radiohumeral synostosis present from the perinatal period, midface hypoplasia, choanal stenosis or atresia, femoral bowing and multiple joint contractures.<ref>PMID:15264278</ref> <ref>PMID:15483095</ref> <ref>PMID:14758361</ref>  Defects in POR are the cause of disordered steroidogenesis due to cytochrome P450 oxidoreductase deficiency (DISPORD) [MIM:[https://omim.org/entry/613571 613571]. A disorder resulting in a rare variant of congenital adrenal hyperplasia, with apparent combined P450C17 and P450C21 deficiency and accumulation of steroid metabolites. Affected girls are born with ambiguous genitalia, but their circulating androgens are low and virilization does not progress. Conversely, affected boys are sometimes born undermasculinized. Boys and girls can present with bone malformations, in some cases resembling the pattern seen in patients with Antley-Bixler syndrome.<ref>PMID:14758361</ref> <ref>PMID:15220035</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/NCPR_HUMAN NCPR_HUMAN]] This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5.  
[https://www.uniprot.org/uniprot/NCPR_HUMAN NCPR_HUMAN] This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.
 
Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency.,Xia C, Panda SP, Marohnic CC, Martasek P, Masters BS, Kim JJ Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13486-91. Epub 2011 Aug 1. PMID:21808038<ref>PMID:21808038</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3qfs" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 30: Line 19:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: NADPH--hemoprotein reductase]]
[[Category: Kim J-JP]]
[[Category: Kim, J J.P]]
[[Category: Marohnic C]]
[[Category: Marohnic, C]]
[[Category: Masters BS]]
[[Category: Masters, B S]]
[[Category: Panda SP]]
[[Category: Panda, S P]]
[[Category: Xia C]]
[[Category: Xia, C]]
[[Category: Fad]]
[[Category: Flavoprotein]]
[[Category: Nadph]]
[[Category: Nadph-cytochrome p450 reductase]]
[[Category: Oxidoreductase]]

Latest revision as of 14:44, 14 March 2024

Crystal Structure of NADPH-Cytochrome P450 Reductase (FAD/NADPH domain)Crystal Structure of NADPH-Cytochrome P450 Reductase (FAD/NADPH domain)

Structural highlights

3qfs is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.4Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

NCPR_HUMAN Defects in POR are the cause of Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis (ABS1) [MIM:201750. A disease characterized by the association of Antley-Bixler syndrome with steroidogenesis defects and abnormal genitalia. Antley-Bixler syndrome is characterized by craniosynostosis, radiohumeral synostosis present from the perinatal period, midface hypoplasia, choanal stenosis or atresia, femoral bowing and multiple joint contractures.[1] [2] [3] Defects in POR are the cause of disordered steroidogenesis due to cytochrome P450 oxidoreductase deficiency (DISPORD) [MIM:613571. A disorder resulting in a rare variant of congenital adrenal hyperplasia, with apparent combined P450C17 and P450C21 deficiency and accumulation of steroid metabolites. Affected girls are born with ambiguous genitalia, but their circulating androgens are low and virilization does not progress. Conversely, affected boys are sometimes born undermasculinized. Boys and girls can present with bone malformations, in some cases resembling the pattern seen in patients with Antley-Bixler syndrome.[4] [5]

Function

NCPR_HUMAN This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5.

See Also

References

  1. Adachi M, Tachibana K, Asakura Y, Yamamoto T, Hanaki K, Oka A. Compound heterozygous mutations of cytochrome P450 oxidoreductase gene (POR) in two patients with Antley-Bixler syndrome. Am J Med Genet A. 2004 Aug 1;128A(4):333-9. PMID:15264278 doi:10.1002/ajmg.a.30169
  2. Fukami M, Horikawa R, Nagai T, Tanaka T, Naiki Y, Sato N, Okuyama T, Nakai H, Soneda S, Tachibana K, Matsuo N, Sato S, Homma K, Nishimura G, Hasegawa T, Ogata T. Cytochrome P450 oxidoreductase gene mutations and Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J Clin Endocrinol Metab. 2005 Jan;90(1):414-26. Epub 2004 Oct 13. PMID:15483095 doi:jc.2004-0810
  3. Fluck CE, Tajima T, Pandey AV, Arlt W, Okuhara K, Verge CF, Jabs EW, Mendonca BB, Fujieda K, Miller WL. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet. 2004 Mar;36(3):228-30. Epub 2004 Feb 1. PMID:14758361 doi:10.1038/ng1300
  4. Fluck CE, Tajima T, Pandey AV, Arlt W, Okuhara K, Verge CF, Jabs EW, Mendonca BB, Fujieda K, Miller WL. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet. 2004 Mar;36(3):228-30. Epub 2004 Feb 1. PMID:14758361 doi:10.1038/ng1300
  5. Arlt W, Walker EA, Draper N, Ivison HE, Ride JP, Hammer F, Chalder SM, Borucka-Mankiewicz M, Hauffa BP, Malunowicz EM, Stewart PM, Shackleton CH. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet. 2004 Jun 26;363(9427):2128-35. PMID:15220035 doi:10.1016/S0140-6736(04)16503-3

3qfs, resolution 1.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA