1ctz: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='1ctz' size='340' side='right'caption='[[1ctz]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
<StructureSection load='1ctz' size='340' side='right'caption='[[1ctz]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1ctz]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CTZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CTZ FirstGlance]. <br>
<table><tr><td colspan='2'>[[1ctz]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CTZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CTZ FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=M3L:N-TRIMETHYLLYSINE'>M3L</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=M3L:N-TRIMETHYLLYSINE'>M3L</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1ycc|1ycc]], [[2ycc|2ycc]], [[1cty|1cty]]</div></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ctz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ctz OCA], [https://pdbe.org/1ctz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ctz RCSB], [https://www.ebi.ac.uk/pdbsum/1ctz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ctz ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ctz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ctz OCA], [https://pdbe.org/1ctz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ctz RCSB], [https://www.ebi.ac.uk/pdbsum/1ctz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ctz ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/CYC1_YEAST CYC1_YEAST]] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain.  
[https://www.uniprot.org/uniprot/CYC1_YEAST CYC1_YEAST] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ctz ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ctz ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The high resolution three-dimensional atomic structures of the reduced and oxidized states of the Y67F variant of yeast iso-1-cytochrome c have been completed. The conformational differences observed are localized directly in the mutation site and in the region about the pyrrole A propionate. Shifts in atomic positions are largely restricted to nearby amino acid side-chains, whereas little perturbation of the polypeptide chain backbone is observed. One prominent difference between the variant and wild-type structures involves a substantial increase in the size of an already existing internal cavity adjacent to residue 67. This same cavity contains an internally bound water molecule (Wat166), which is found in all eukaryotic cytochromes c for which structures are available. In the reduced Y67F mutant protein a second water molecule (Wat300) is observed to reside in this enlarged internal cavity, assuming a position approximately equivalent to that of the hydroxyl group of Tyr67 in the wild-type protein. A further consequence of this mutation is the alteration of the hydrogen bond network between Tyr67, Wat166 and other nearby residues. This appears to be responsible for the absence of oxidation state dependent changes in polypeptide chain flexibility observed in the wild-type protein. Furthermore, loss of the normally resident Tyr67 OH to Met80 SD hydrogen bond leads to a significantly lower midpoint reduction potential. These results reaffirm proposals that both Tyr67 and Wat166 play a central role in stabilizing the alternative oxidation states of cytochrome c.
Mutation of tyrosine-67 to phenylalanine in cytochrome c significantly alters the local heme environment.,Berghuis AM, Guillemette JG, Smith M, Brayer GD J Mol Biol. 1994 Jan 28;235(4):1326-41. PMID:8308895<ref>PMID:8308895</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1ctz" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Cytochrome C 3D structures|Cytochrome C 3D structures]]
*[[Cytochrome C 3D structures|Cytochrome C 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Atcc 18824]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Berghuis, A M]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Brayer, G D]]
[[Category: Berghuis AM]]
[[Category: Brayer GD]]

Latest revision as of 18:43, 13 March 2024

MUTATION OF TYROSINE-67 IN CYTOCHROME C SIGNIFICANTLY ALTERS THE LOCAL HEME ENVIRONMENTMUTATION OF TYROSINE-67 IN CYTOCHROME C SIGNIFICANTLY ALTERS THE LOCAL HEME ENVIRONMENT

Structural highlights

1ctz is a 1 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CYC1_YEAST Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

1ctz, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA