1c0n: Difference between revisions

No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='1c0n' size='340' side='right'caption='[[1c0n]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
<StructureSection load='1c0n' size='340' side='right'caption='[[1c0n]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1c0n]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1C0N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1C0N FirstGlance]. <br>
<table><tr><td colspan='2'>[[1c0n]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1C0N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1C0N FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1c0n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1c0n OCA], [https://pdbe.org/1c0n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1c0n RCSB], [https://www.ebi.ac.uk/pdbsum/1c0n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1c0n ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1c0n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1c0n OCA], [https://pdbe.org/1c0n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1c0n RCSB], [https://www.ebi.ac.uk/pdbsum/1c0n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1c0n ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/SUFS_ECOLI SUFS_ECOLI]] Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L-selenocysteine. Selenocysteine lyase activity is however unsure in vivo.<ref>PMID:10829016</ref> <ref>PMID:12089140</ref> <ref>PMID:11997471</ref> <ref>PMID:12876288</ref> <ref>PMID:12941942</ref>
[https://www.uniprot.org/uniprot/SUFS_ECOLI SUFS_ECOLI] Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L-selenocysteine. Selenocysteine lyase activity is however unsure in vivo.<ref>PMID:10829016</ref> <ref>PMID:12089140</ref> <ref>PMID:11997471</ref> <ref>PMID:12876288</ref> <ref>PMID:12941942</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 19: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1c0n ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1c0n ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Escherichia coli CsdB, a NifS homologue with a high specificity for L-selenocysteine, is a pyridoxal 5'-phosphate (PLP)-dependent dimeric enzyme that belongs to aminotransferases class V in fold-type I of PLP enzymes and catalyzes the decomposition of L-selenocysteine into selenium and L-alanine. The crystal structure of the enzyme has been determined by the X-ray crystallographic method of multiple isomorphous replacement and refined to an R-factor of 18.7% at 2.8 A resolution. The subunit structure consists of three parts: a large domain of an alpha/beta-fold containing a seven-stranded beta-sheet flanked by seven helices, a small domain containing a four-stranded antiparallel beta-sheet flanked by three alpha-helices, and an N-terminal segment containing two alpha-helices. The overall fold of the subunit is similar to those of the enzymes belonging to the fold-type I family represented by aspartate aminotransferase. However, CsdB has several structural features that are not observed in other families of the enzymes. A remarkable feature is that an alpha-helix in the lobe extending from the small domain to the large domain in one subunit of the dimer interacts with a beta-hairpin loop protruding from the large domain of the other subunit. The extended lobe and the protruded beta-hairpin loop form one side of a limb of each active site in the enzyme. The most striking structural feature of CsdB lies in the location of a putative catalytic residue; the side chain of Cys364 on the extended lobe of one subunit is close enough to interact with the gamma-atom of a modeled substrate in the active site of the subunit. Moreover, His55 from the other subunit is positioned so that it interacts with the gamma- or beta-atom of the substrate and may be involved in the catalytic reaction. This is the first report on three-dimensional structures of NifS homologues.
Structure of a NifS homologue: X-ray structure analysis of CsdB, an Escherichia coli counterpart of mammalian selenocysteine lyase.,Fujii T, Maeda M, Mihara H, Kurihara T, Esaki N, Hata Y Biochemistry. 2000 Feb 15;39(6):1263-73. PMID:10684605<ref>PMID:10684605</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1c0n" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 35: Line 27:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacillus coli migula 1895]]
[[Category: Escherichia coli]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Esaki, N]]
[[Category: Esaki N]]
[[Category: Fujii, T]]
[[Category: Fujii T]]
[[Category: Hata, Y]]
[[Category: Hata Y]]
[[Category: Kurihara, T]]
[[Category: Kurihara T]]
[[Category: Maeda, M]]
[[Category: Maeda M]]
[[Category: Mihara, H]]
[[Category: Mihara H]]
[[Category: Alpha/beta fold]]
[[Category: Lyase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA