1au9: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='1au9' size='340' side='right'caption='[[1au9]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
<StructureSection load='1au9' size='340' side='right'caption='[[1au9]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1au9]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_amyloliquifaciens"_(sic)_fukumoto_1943 "bacillus amyloliquifaciens" (sic) fukumoto 1943]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AU9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AU9 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1au9]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_amyloliquefaciens Bacillus amyloliquefaciens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AU9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AU9 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=IPA:ISOPROPYL+ALCOHOL'>IPA</scene>, <scene name='pdbligand=UNX:UNKNOWN+ATOM+OR+ION'>UNX</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Subtilisin Subtilisin], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.62 3.4.21.62] </span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=IPA:ISOPROPYL+ALCOHOL'>IPA</scene>, <scene name='pdbligand=UNX:UNKNOWN+ATOM+OR+ION'>UNX</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1au9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1au9 OCA], [https://pdbe.org/1au9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1au9 RCSB], [https://www.ebi.ac.uk/pdbsum/1au9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1au9 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1au9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1au9 OCA], [https://pdbe.org/1au9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1au9 RCSB], [https://www.ebi.ac.uk/pdbsum/1au9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1au9 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/SUBT_BACAM SUBT_BACAM]] Subtilisin is an extracellular alkaline serine protease, it catalyzes the hydrolysis of proteins and peptide amides. Has a high substrate specificity to fibrin.<ref>PMID:12524032</ref>
[https://www.uniprot.org/uniprot/SUBT_BACAM SUBT_BACAM] Subtilisin is an extracellular alkaline serine protease, it catalyzes the hydrolysis of proteins and peptide amides. Has a high substrate specificity to fibrin.<ref>PMID:12524032</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1au9 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1au9 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Six individual amino acid substitutions at separate positions in the tertiary structure of subtilisin BPN' (EC 3.4.21.14) were found to increase the stability of this enzyme, as judged by differential scanning calorimetry and decreased rates of thermal inactivation. These stabilizing changes, N218S, G169A, Y217K, M50F, Q206C, and N76D, were discovered through the use of five different investigative approaches: (1) random mutagenesis; (2) design of buried hydrophobic side groups; (3) design of electrostatic interactions at Ca2+ binding sites; (4) sequence homology consensus; and (5) serendipity. Individually, the six amino acid substitutions increase the delta G of unfolding between 0.3 and 1.3 kcal/mol at 58.5 degrees C. The combination of these six individual stabilizing mutations together into one subtilisin BPN' molecule was found to result in approximately independent and additive increases in the delta G of unfolding to give a net increase of 3.8 kcal/mol (58.5 degrees C). Thermodynamic stability was also shown to be related to resistance to irreversible inactivation, which included elevated temperatures (65 degrees C) or extreme alkalinity (pH 12.0). Under these denaturing conditions, the rate of inactivation of the combination variant is approximately 300 times slower than that of the wild-type subtilisin BPN'. A comparison of the 1.8-A-resolution crystal structures of mutant and wild-type enzymes revealed only independent and localized structural changes around the site of the amino acid side group substitutions.(ABSTRACT TRUNCATED AT 250 WORDS)
Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding.,Pantoliano MW, Whitlow M, Wood JF, Dodd SW, Hardman KD, Rollence ML, Bryan PN Biochemistry. 1989 Sep 5;28(18):7205-13. PMID:2684274<ref>PMID:2684274</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1au9" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 36: Line 27:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacillus amyloliquefaciens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Subtilisin]]
[[Category: Howard AJ]]
[[Category: Howard, A J]]
[[Category: Whitlow M]]
[[Category: Whitlow, M]]
[[Category: Wood JF]]
[[Category: Wood, J F]]
[[Category: Hydrolase]]
[[Category: Serine protease]]

Revision as of 18:28, 13 March 2024

SUBTILISIN BPN' MUTANT 8324 IN CITRATESUBTILISIN BPN' MUTANT 8324 IN CITRATE

Structural highlights

1au9 is a 1 chain structure with sequence from Bacillus amyloliquefaciens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SUBT_BACAM Subtilisin is an extracellular alkaline serine protease, it catalyzes the hydrolysis of proteins and peptide amides. Has a high substrate specificity to fibrin.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Peng Y, Huang Q, Zhang RH, Zhang YZ. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol B Biochem Mol Biol. 2003 Jan;134(1):45-52. PMID:12524032

1au9, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA