6mud: Difference between revisions

No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='6mud' size='340' side='right'caption='[[6mud]], [[Resolution|resolution]] 2.69&Aring;' scene=''>
<StructureSection load='6mud' size='340' side='right'caption='[[6mud]], [[Resolution|resolution]] 2.69&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6mud]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MUD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MUD FirstGlance]. <br>
<table><tr><td colspan='2'>[[6mud]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MUD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6MUD FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.69&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CALM1, CALM, CAM, CAM1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), SCN5A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mud FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mud OCA], [http://pdbe.org/6mud PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mud RCSB], [http://www.ebi.ac.uk/pdbsum/6mud PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mud ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6mud FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mud OCA], [https://pdbe.org/6mud PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6mud RCSB], [https://www.ebi.ac.uk/pdbsum/6mud PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6mud ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN]] The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14. [[http://www.uniprot.org/uniprot/SCN5A_HUMAN SCN5A_HUMAN]] Defects in SCN5A are a cause of progressive familial heart block type 1A (PFHB1A) [MIM:[http://omim.org/entry/113900 113900]]; also known as Lenegre-Lev disease or progressive cardiac conduction defect (PCCD). PFHB1A is an autosomal dominant cardiac bundle branch disorder that may progress to complete heart block. PFHB1A is characterized by progressive alteration of cardiac conduction through the His-Purkinje system with right or left bundle branch block and widening of QRS complexes, leading to complete atrioventricular block and causing syncope and sudden death.<ref>PMID:10471492</ref> <ref>PMID:11234013</ref> <ref>PMID:11804990</ref> <ref>PMID:12574143</ref> <ref>PMID:12569159</ref> <ref>PMID:19251209</ref>  Defects in SCN5A are the cause of long QT syndrome type 3 (LQT3) [MIM:[http://omim.org/entry/603830 603830]]. Long QT syndromes are heart disorders characterized by a prolonged QT interval on the ECG and polymorphic ventricular arrhythmias. They cause syncope and sudden death in response to exercise or emotional stress. LQT3 inheritance is an autosomal dominant.<ref>PMID:10471492</ref> <ref>PMID:12454206</ref> <ref>PMID:7889574</ref> <ref>PMID:8541846</ref> <ref>PMID:7651517</ref> <ref>PMID:9686753</ref> <ref>PMID:9506831</ref> <ref>PMID:10627139</ref> [:]<ref>PMID:10508990</ref> <ref>PMID:10377081</ref> <ref>PMID:10590249</ref> <ref>PMID:10973849</ref> <ref>PMID:10911008</ref> <ref>PMID:11304498</ref> <ref>PMID:11410597</ref> <ref>PMID:11710892</ref> <ref>PMID:11889015</ref> <ref>PMID:11997281</ref> <ref>PMID:12209021</ref> <ref>PMID:12673799</ref> <ref>PMID:15840476</ref> <ref>PMID:16922724</ref> <ref>PMID:18708744</ref> <ref>PMID:18060054</ref> <ref>PMID:18929331</ref> <ref>PMID:18848812</ref> <ref>PMID:18451998</ref> <ref>PMID:21109022</ref>  Defects in SCN5A are the cause of Brugada syndrome type 1 (BRGDA1) [MIM:[http://omim.org/entry/601144 601144]]. An autosomal dominant tachyarrhythmia characterized by right bundle branch block and ST segment elevation on an electrocardiogram (ECG). It can cause the ventricles to beat so fast that the blood is prevented from circulating efficiently in the body. When this situation occurs (called ventricular fibrillation), the individual will faint and may die in a few minutes if the heart is not reset.<ref>PMID:10471492</ref> <ref>PMID:19251209</ref> <ref>PMID:11410597</ref> <ref>PMID:9521325</ref> <ref>PMID:10690282</ref> <ref>PMID:10532948</ref> <ref>PMID:10618304</ref> <ref>PMID:12106943</ref> <ref>PMID:11901046</ref> <ref>PMID:11823453</ref> <ref>PMID:12051963</ref> <ref>PMID:15023552</ref> <ref>PMID:15338453</ref> <ref>PMID:15579534</ref> <ref>PMID:16266370</ref> <ref>PMID:15851320</ref> <ref>PMID:16325048</ref> <ref>PMID:16616735</ref> <ref>PMID:17075016</ref> <ref>PMID:17081365</ref> <ref>PMID:17198989</ref> <ref>PMID:18341814</ref> <ref>PMID:18616619</ref> <ref>PMID:18456723</ref> <ref>PMID:18252757</ref> <ref>PMID:19272188</ref>  Defects in SCN5A are the cause of sick sinus syndrome type 1 (SSS1) [MIM:[http://omim.org/entry/608567 608567]]. The term 'sick sinus syndrome' encompasses a variety of conditions caused by sinus node dysfunction. The most common clinical manifestations are syncope, presyncope, dizziness, and fatigue. Electrocardiogram typically shows sinus bradycardia, sinus arrest, and/or sinoatrial block. Episodes of atrial tachycardias coexisting with sinus bradycardia ('tachycardia-bradycardia syndrome') are also common in this disorder. SSS occurs most often in the elderly associated with underlying heart disease or previous cardiac surgery, but can also occur in the fetus, infant, or child without heart disease or other contributing factors, in which case it is considered to be a congenital disorder.<ref>PMID:10471492</ref> <ref>PMID:11748104</ref> <ref>PMID:14523039</ref> <ref>PMID:22795782</ref>  Defects in SCN5A are the cause of familial paroxysmal ventricular fibrillation type 1 (VF1) [MIM:[http://omim.org/entry/603829 603829]]. A cardiac arrhythmia marked by fibrillary contractions of the ventricular muscle due to rapid repetitive excitation of myocardial fibers without coordinated contraction of the ventricle and by absence of atrial activity.<ref>PMID:10471492</ref> <ref>PMID:10940383</ref>  Defects in SCN5A may be a cause of sudden infant death syndrome (SIDS) [MIM:[http://omim.org/entry/272120 272120]]. SIDS is the sudden death of an infant younger than 1 year that remains unexplained after a thorough case investigation, including performance of a complete autopsy, examination of the death scene, and review of clinical history. Pathophysiologic mechanisms for SIDS may include respiratory dysfunction, cardiac dysrhythmias, cardiorespiratory instability, and inborn errors of metabolism, but definitive pathogenic mechanisms precipitating an infant sudden death remain elusive. Long QT syndromes-associated mutations can be responsible for some of SIDS cases.<ref>PMID:10471492</ref> <ref>PMID:18596570</ref> <ref>PMID:19302788</ref>  Defects in SCN5A may be a cause of familial atrial standstill (FAS) [MIM:[http://omim.org/entry/108770 108770]]. Atrial standstill is an extremely rare arrhythmia, characterized by the absence of electrical and mechanical activity in the atria. Electrocardiographically, it is characterized by bradycardia, the absence of P waves, and a junctional narrow complex escape rhythm.<ref>PMID:10471492</ref> <ref>PMID:12522116</ref>  Defects in SCN5A are the cause of cardiomyopathy dilated type 1E (CMD1E) [MIM:[http://omim.org/entry/601154 601154]]; also known as dilated cardiomyopathy with conduction disorder and arrhythmia or dilated cardiomyopathy with conduction defect 2. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:10471492</ref> <ref>PMID:15466643</ref>  Defects in SCN5A are the cause of familial atrial fibrillation type 10 (ATFB10) [MIM:[http://omim.org/entry/614022 614022]]. ATFB10 is a familial form of atrial fibrillation, a common sustained cardiac rhythm disturbance. Atrial fibrillation is characterized by disorganized atrial electrical activity and ineffective atrial contraction promoting blood stasis in the atria and reduces ventricular filling. It can result in palpitations, syncope, thromboembolic stroke, and congestive heart failure.<ref>PMID:10471492</ref> <ref>PMID:18378609</ref> <ref>PMID:18088563</ref> 
[https://www.uniprot.org/uniprot/CALM2_HUMAN CALM2_HUMAN] Catecholaminergic polymorphic ventricular tachycardia;Brugada syndrome;Romano-Ward syndrome. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM2 are the cause of LQT15.
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN]] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).<ref>PMID:16760425</ref> <ref>PMID:23893133</ref> <ref>PMID:26969752</ref> <ref>PMID:27165696</ref>  [[http://www.uniprot.org/uniprot/SCN5A_HUMAN SCN5A_HUMAN]] This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels.<ref>PMID:19074138</ref> 
[https://www.uniprot.org/uniprot/CALM2_HUMAN CALM2_HUMAN] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).<ref>PMID:16760425</ref> <ref>PMID:26969752</ref> <ref>PMID:27165696</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Voltage-gated sodium (NaV) and calcium channels (CaV) form targets for calmodulin (CaM), which affects channel inactivation properties. A major interaction site for CaM resides in the C-terminal (CT) region, consisting of an IQ domain downstream of an EF-hand domain. We present a crystal structure of fully Ca(2+)-occupied CaM, bound to the CT of NaV1.5. The structure shows that the C-terminal lobe binds to a site approximately 90 degrees rotated relative to a previous site reported for an apoCaM complex with the NaV1.5 CT and for ternary complexes containing fibroblast growth factor homologous factors (FHF). We show that the binding of FHFs forces the EF-hand domain in a conformation that does not allow binding of the Ca(2+)-occupied C-lobe of CaM. These observations highlight the central role of the EF-hand domain in modulating the binding mode of CaM. The binding sites for Ca(2+)-free and Ca(2+)-occupied CaM contain targets for mutations linked to long-QT syndrome, a type of inherited arrhythmia. The related NaV1.4 channel has been shown to undergo Ca(2+)-dependent inactivation (CDI) akin to CaVs. We present a crystal structure of Ca(2+)/CaM bound to the NaV1.4 IQ domain, which shows a binding mode that would clash with the EF-hand domain. We postulate the relative reorientation of the EF-hand domain and the IQ domain as a possible conformational switch that underlies CDI.
 
Crystal structures of Ca(2+)-calmodulin bound to NaV C-terminal regions suggest role for EF-hand domain in binding and inactivation.,Gardill BR, Rivera-Acevedo RE, Tung CC, Van Petegem F Proc Natl Acad Sci U S A. 2019 May 9. pii: 1818618116. doi:, 10.1073/pnas.1818618116. PMID:31072926<ref>PMID:31072926</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6mud" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Calmodulin 3D structures|Calmodulin 3D structures]]
*[[Ion channels 3D structures|Ion channels 3D structures]]
*[[Ion channels 3D structures|Ion channels 3D structures]]
== References ==
== References ==
Line 28: Line 20:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Gardill, B R]]
[[Category: Gardill BR]]
[[Category: Petegem, F Van]]
[[Category: Tung CC]]
[[Category: Tung, C C]]
[[Category: Van Petegem F]]
[[Category: Calcium binding-transport protein complex]]
[[Category: Ef-hand domain]]
[[Category: Transport protein]]
[[Category: Voltage-gated ion channel]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA