|
|
Line 10: |
Line 10: |
| == Function == | | == Function == |
| [https://www.uniprot.org/uniprot/GLP1R_HUMAN GLP1R_HUMAN] This is a receptor for glucagon-like peptide 1. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase. | | [https://www.uniprot.org/uniprot/GLP1R_HUMAN GLP1R_HUMAN] This is a receptor for glucagon-like peptide 1. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase. |
| <div style="background-color:#fffaf0;">
| |
| == Publication Abstract from PubMed ==
| |
| Peptide agonists acting on the glucagon-like peptide 1 receptor (GLP-1R) promote glucose-dependent insulin release and therefore represent important therapeutic agents for type 2 diabetes (T2D). Previous data indicated that an N-terminal type II beta-turn motif might be an important feature for agonists acting on the GLP-1R. In contrast, recent publications reporting the structure of the full-length GLP-1R have shown the N-terminus of receptor-bound agonists in an alpha-helical conformation. To reconcile these conflicting results, we prepared N-terminally constrained analogues of glucagon-like peptide 1 (GLP-1) and exendin-4 and evaluated their receptor affinity and functionality in vitro; we then examined their crystal structures in complex with the extracellular domain of the GLP-1R and used molecular modeling and molecular dynamics simulations for further investigations. We report that the peptides' N-termini in all determined crystal structures adopted a type II beta-turn conformation, but in vitro potency varied several thousand-fold across the series. Potency correlated better with alpha-helicity in our computational model, although we have found that the energy barrier between the two mentioned conformations is low in our most potent analogues and the flexibility of the N-terminus is highlighted by the dynamics simulations.
| |
|
| |
| alpha-Helix or beta-Turn? An Investigation into N-Terminally Constrained Analogues of Glucagon-like Peptide 1 (GLP-1) and Exendin-4.,Oddo A, Mortensen S, Thogersen H, De Maria L, Hennen S, McGuire JN, Kofoed J, Linderoth L, Reedtz-Runge S Biochemistry. 2018 Jun 21. doi: 10.1021/acs.biochem.8b00105. PMID:29877701<ref>PMID:29877701</ref>
| |
|
| |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| |
| </div>
| |
| <div class="pdbe-citations 5ott" style="background-color:#fffaf0;"></div>
| |
|
| |
|
| ==See Also== | | ==See Also== |
| *[[Glucagon-like peptide receptor 3D structures|Glucagon-like peptide receptor 3D structures]] | | *[[Glucagon-like peptide receptor 3D structures|Glucagon-like peptide receptor 3D structures]] |
| == References ==
| |
| <references/>
| |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |