|
|
Line 10: |
Line 10: |
| == Function == | | == Function == |
| [https://www.uniprot.org/uniprot/NAMPT_HUMAN NAMPT_HUMAN] Catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, an intermediate in the biosynthesis of NAD. It is the rate limiting component in the mammalian NAD biosynthesis pathway (By similarity). | | [https://www.uniprot.org/uniprot/NAMPT_HUMAN NAMPT_HUMAN] Catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, an intermediate in the biosynthesis of NAD. It is the rate limiting component in the mammalian NAD biosynthesis pathway (By similarity). |
| <div style="background-color:#fffaf0;">
| |
| == Publication Abstract from PubMed ==
| |
| NAMPT inhibitors may show potential as therapeutics for oncology. Throughout our NAMPT inhibitor program, we found that exposed pyridines or related heterocyclic systems in the left-hand portion of the inhibitors are necessary pharmacophores for potent cellular NAMPT inhibition. However, when combined with a benzyl group in the center of the inhibitors, such pyridine-like moieties also led to consistent and potent inhibition of CYP2C9. In an attempt to reduce CYP2C9 inhibition, a parallel synthesis approach was used to identify central benzyl group replacements with increased Fsp3. A spirocyclic central motif was thus discovered that was combined with left-hand pyridines (or pyridine-like systems) to provide cellularly potent NAMPT inhibitors with minimal CYP2C9 inhibition. Further optimization of potency and ADME properties led to the discovery of compound 68, a highly potent NAMPT inhibitor with outstanding efficacy in a mouse tumor xenograft model and lacking measurable CYP2C9 inhibition at the concentrations tested.
| |
|
| |
| Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors.,Zak M, Yuen PW, Liu X, Patel S, Sampath D, Oeh J, Liederer BM, Wang W, O'Brien T, Xiao Y, Skelton N, Hua R, Sodhi J, Wang Y, Zhang L, Zhao G, Zheng X, Ho YC, Bair KW, Dragovich PS J Med Chem. 2016 Aug 30. PMID:27541271<ref>PMID:27541271</ref>
| |
|
| |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| |
| </div>
| |
| <div class="pdbe-citations 5kit" style="background-color:#fffaf0;"></div>
| |
|
| |
|
| ==See Also== | | ==See Also== |
| *[[Phosphoribosyltransferase 3D structures|Phosphoribosyltransferase 3D structures]] | | *[[Phosphoribosyltransferase 3D structures|Phosphoribosyltransferase 3D structures]] |
| == References ==
| |
| <references/>
| |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |