4s0r: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4s0r]] is a 28 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis_subsp._subtilis_str._168 Bacillus subtilis subsp. subtilis str. 168]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4S0R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4S0R FirstGlance]. <br> | <table><tr><td colspan='2'>[[4s0r]] is a 28 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis_subsp._subtilis_str._168 Bacillus subtilis subsp. subtilis str. 168]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4S0R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4S0R FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GLN:GLUTAMINE'>GLN</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.5Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GLN:GLUTAMINE'>GLN</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4s0r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4s0r OCA], [https://pdbe.org/4s0r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4s0r RCSB], [https://www.ebi.ac.uk/pdbsum/4s0r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4s0r ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4s0r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4s0r OCA], [https://pdbe.org/4s0r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4s0r RCSB], [https://www.ebi.ac.uk/pdbsum/4s0r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4s0r ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/GLN1A_BACSU GLN1A_BACSU] Glutamine synthetase (GS) is an unusual multitasking protein that functions as an enzyme, a transcription coregulator, and a chaperone in ammonium assimilation and in the regulation of genes involved in nitrogen metabolism (PubMed:25691471). It catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia (PubMed:24158439). Feedback-inhibited GlnA interacts with and regulates the activity of the transcriptional regulator TnrA (PubMed:11719184, PubMed:12139611). During nitrogen limitation, TnrA is in its DNA-binding active state and turns on the transcription of genes required for nitrogen assimilation (PubMed:11719184, PubMed:12139611, PubMed:25691471). Under conditions of nitrogen excess, feedback-inhibited GlnA forms a stable complex with TnrA, which inhibits its DNA-binding activity (PubMed:11719184, PubMed:12139611, PubMed:25691471). In contrast, feedback-inhibited GlnA acts as a chaperone to stabilize the DNA-binding activity of GlnR, which represses the transcription of nitrogen assimilation genes (PubMed:25691471).<ref>PMID:11719184</ref> <ref>PMID:12139611</ref> <ref>PMID:24158439</ref> <ref>PMID:25691471</ref> | [https://www.uniprot.org/uniprot/GLN1A_BACSU GLN1A_BACSU] Glutamine synthetase (GS) is an unusual multitasking protein that functions as an enzyme, a transcription coregulator, and a chaperone in ammonium assimilation and in the regulation of genes involved in nitrogen metabolism (PubMed:25691471). It catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia (PubMed:24158439). Feedback-inhibited GlnA interacts with and regulates the activity of the transcriptional regulator TnrA (PubMed:11719184, PubMed:12139611). During nitrogen limitation, TnrA is in its DNA-binding active state and turns on the transcription of genes required for nitrogen assimilation (PubMed:11719184, PubMed:12139611, PubMed:25691471). Under conditions of nitrogen excess, feedback-inhibited GlnA forms a stable complex with TnrA, which inhibits its DNA-binding activity (PubMed:11719184, PubMed:12139611, PubMed:25691471). In contrast, feedback-inhibited GlnA acts as a chaperone to stabilize the DNA-binding activity of GlnR, which represses the transcription of nitrogen assimilation genes (PubMed:25691471).<ref>PMID:11719184</ref> <ref>PMID:12139611</ref> <ref>PMID:24158439</ref> <ref>PMID:25691471</ref> | ||
==See Also== | ==See Also== |