4j8n: Difference between revisions

No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4j8n]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J8N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4J8N FirstGlance]. <br>
<table><tr><td colspan='2'>[[4j8n]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4J8N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4J8N FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4j8n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j8n OCA], [https://pdbe.org/4j8n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4j8n RCSB], [https://www.ebi.ac.uk/pdbsum/4j8n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4j8n ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.135&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4j8n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j8n OCA], [https://pdbe.org/4j8n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4j8n RCSB], [https://www.ebi.ac.uk/pdbsum/4j8n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4j8n ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/AURKA_HUMAN AURKA_HUMAN] Mitotic serine/threonine kinases that contributes to the regulation of cell cycle progression. Associates with the centrosome and the spindle microtubules during mitosis and plays a critical role in various mitotic events including the establishment of mitotic spindle, centrosome duplication, centrosome separation as well as maturation, chromosomal alignment, spindle assembly checkpoint, and cytokinesis. Required for initial activation of CDK1 at centrosomes. Phosphorylates numerous target proteins, including ARHGEF2, BORA, BRCA1, CDC25B, DLGP5, HDAC6, KIF2A, LATS2, NDEL1, PARD3, PPP1R2, PLK1, RASSF1, TACC3, p53/TP53 and TPX2. Regulates KIF2A tubulin depolymerase activity. Required for normal axon formation. Plays a role in microtubule remodeling during neurite extension. Important for microtubule formation and/or stabilization. Also acts as a key regulatory component of the p53/TP53 pathway, and particularly the checkpoint-response pathways critical for oncogenic transformation of cells, by phosphorylating and stabilizing p53/TP53. Phosphorylates its own inhibitors, the protein phosphatase type 1 (PP1) isoforms, to inhibit their activity. Necessary for proper cilia disassembly prior to mitosis.<ref>PMID:9606188</ref> <ref>PMID:11039908</ref> <ref>PMID:11551964</ref> <ref>PMID:12390251</ref> <ref>PMID:13678582</ref> <ref>PMID:14523000</ref> <ref>PMID:15147269</ref> <ref>PMID:14990569</ref> <ref>PMID:15128871</ref> <ref>PMID:14702041</ref> <ref>PMID:15987997</ref> <ref>PMID:18056443</ref> <ref>PMID:17604723</ref> <ref>PMID:17360485</ref> <ref>PMID:18615013</ref> <ref>PMID:19812038</ref> <ref>PMID:19351716</ref> <ref>PMID:19668197</ref> <ref>PMID:19357306</ref> <ref>PMID:20643351</ref> <ref>PMID:17125279</ref>  
[https://www.uniprot.org/uniprot/AURKA_HUMAN AURKA_HUMAN] Mitotic serine/threonine kinases that contributes to the regulation of cell cycle progression. Associates with the centrosome and the spindle microtubules during mitosis and plays a critical role in various mitotic events including the establishment of mitotic spindle, centrosome duplication, centrosome separation as well as maturation, chromosomal alignment, spindle assembly checkpoint, and cytokinesis. Required for initial activation of CDK1 at centrosomes. Phosphorylates numerous target proteins, including ARHGEF2, BORA, BRCA1, CDC25B, DLGP5, HDAC6, KIF2A, LATS2, NDEL1, PARD3, PPP1R2, PLK1, RASSF1, TACC3, p53/TP53 and TPX2. Regulates KIF2A tubulin depolymerase activity. Required for normal axon formation. Plays a role in microtubule remodeling during neurite extension. Important for microtubule formation and/or stabilization. Also acts as a key regulatory component of the p53/TP53 pathway, and particularly the checkpoint-response pathways critical for oncogenic transformation of cells, by phosphorylating and stabilizing p53/TP53. Phosphorylates its own inhibitors, the protein phosphatase type 1 (PP1) isoforms, to inhibit their activity. Necessary for proper cilia disassembly prior to mitosis.<ref>PMID:9606188</ref> <ref>PMID:11039908</ref> <ref>PMID:11551964</ref> <ref>PMID:12390251</ref> <ref>PMID:13678582</ref> <ref>PMID:14523000</ref> <ref>PMID:15147269</ref> <ref>PMID:14990569</ref> <ref>PMID:15128871</ref> <ref>PMID:14702041</ref> <ref>PMID:15987997</ref> <ref>PMID:18056443</ref> <ref>PMID:17604723</ref> <ref>PMID:17360485</ref> <ref>PMID:18615013</ref> <ref>PMID:19812038</ref> <ref>PMID:19351716</ref> <ref>PMID:19668197</ref> <ref>PMID:19357306</ref> <ref>PMID:20643351</ref> <ref>PMID:17125279</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
MYC proteins are major drivers of cancer yet are considered undruggable because their DNA binding domains are composed of two extended alpha helices with no apparent surfaces for small-molecule binding. Proteolytic degradation of MYCN protein is regulated in part by a kinase-independent function of Aurora A. We describe a class of inhibitors that disrupts the native conformation of Aurora A and drives the degradation of MYCN protein across MYCN-driven cancers. Comparison of cocrystal structures with structure-activity relationships across multiple inhibitors and chemotypes, coupled with mechanistic studies and biochemical assays, delineates an Aurora A conformation-specific effect on proteolytic degradation of MYCN, rather than simple nanomolar-level inhibition of Aurora A kinase activity.
Drugging MYCN through an Allosteric Transition in Aurora Kinase A.,Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E, Simonds EF, Seeger R, Matthay KK, Hertz NT, Eilers M, Shokat KM, Weiss WA Cancer Cell. 2014 Sep 8;26(3):414-27. doi: 10.1016/j.ccr.2014.07.015. Epub 2014, Aug 28. PMID:25175806<ref>PMID:25175806</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4j8n" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA