4dot: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4dot]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4DOT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4DOT FirstGlance]. <br>
<table><tr><td colspan='2'>[[4dot]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4DOT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4DOT FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4dot FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4dot OCA], [https://pdbe.org/4dot PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4dot RCSB], [https://www.ebi.ac.uk/pdbsum/4dot PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4dot ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.96&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4dot FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4dot OCA], [https://pdbe.org/4dot PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4dot RCSB], [https://www.ebi.ac.uk/pdbsum/4dot PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4dot ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/PLAT3_HUMAN PLAT3_HUMAN]] Exhibits both phospholipase A1/2 and acyltransferase activities (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381, PubMed:26503625). Shows phospholipase A1 (PLA1) and A2 (PLA2) activity, catalyzing the calcium-independent release of fatty acids from the sn-1 or sn-2 position of glycerophospholipids (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381, PubMed:22923616). For most substrates, PLA1 activity is much higher than PLA2 activity (PubMed:19615464). Shows O-acyltransferase activity,catalyzing the transfer of a fatty acyl group from glycerophospholipid to the hydroxyl group of lysophospholipid (PubMed:19615464). Shows N-acyltransferase activity, catalyzing the calcium-independent transfer of a fatty acyl group at the sn-1 position of phosphatidylcholine (PC) and other glycerophospholipids to the primary amine of phosphatidylethanolamine (PE), forming N-acylphosphatidylethanolamine (NAPE), which serves as precursor for N-acylethanolamines (NAEs) (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381). Exhibits high N-acyltransferase activity and low phospholipase A1/2 activity (PubMed:22825852). Required for complete organelle rupture and degradation that occur during eye lens terminal differentiation, when fiber cells that compose the lens degrade all membrane-bound organelles in order to provide lens with transparency to allow the passage of light. Organelle membrane degradation is probably catalyzed by the phospholipase activity (By similarity).[UniProtKB:Q8R3U1]<ref>PMID:19047760</ref> <ref>PMID:19615464</ref> <ref>PMID:22605381</ref> <ref>PMID:22825852</ref> <ref>PMID:22923616</ref> <ref>PMID:26503625</ref>  (Microbial infection) Acts as a host factor for picornaviruses: required during early infection to promote viral genome release into the cytoplasm (PubMed:28077878). May act as a cellular sensor of membrane damage at sites of virus entry, which relocalizes to sites of membrane rupture upon virus unfection (PubMed:28077878). Facilitates safe passage of the RNA away from LGALS8, enabling viral genome translation by host ribosome (PubMed:28077878). May also be involved in initiating pore formation, increasing pore size or in maintaining pores for genome delivery (PubMed:28077878). The lipid-modifying enzyme activity is required for this process (PubMed:28077878).<ref>PMID:28077878</ref>
[https://www.uniprot.org/uniprot/PLAT3_HUMAN PLAT3_HUMAN] Exhibits both phospholipase A1/2 and acyltransferase activities (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381, PubMed:26503625). Shows phospholipase A1 (PLA1) and A2 (PLA2) activity, catalyzing the calcium-independent release of fatty acids from the sn-1 or sn-2 position of glycerophospholipids (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381, PubMed:22923616). For most substrates, PLA1 activity is much higher than PLA2 activity (PubMed:19615464). Shows O-acyltransferase activity,catalyzing the transfer of a fatty acyl group from glycerophospholipid to the hydroxyl group of lysophospholipid (PubMed:19615464). Shows N-acyltransferase activity, catalyzing the calcium-independent transfer of a fatty acyl group at the sn-1 position of phosphatidylcholine (PC) and other glycerophospholipids to the primary amine of phosphatidylethanolamine (PE), forming N-acylphosphatidylethanolamine (NAPE), which serves as precursor for N-acylethanolamines (NAEs) (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381). Exhibits high N-acyltransferase activity and low phospholipase A1/2 activity (PubMed:22825852). Required for complete organelle rupture and degradation that occur during eye lens terminal differentiation, when fiber cells that compose the lens degrade all membrane-bound organelles in order to provide lens with transparency to allow the passage of light. Organelle membrane degradation is probably catalyzed by the phospholipase activity (By similarity).[UniProtKB:Q8R3U1]<ref>PMID:19047760</ref> <ref>PMID:19615464</ref> <ref>PMID:22605381</ref> <ref>PMID:22825852</ref> <ref>PMID:22923616</ref> <ref>PMID:26503625</ref>  (Microbial infection) Acts as a host factor for picornaviruses: required during early infection to promote viral genome release into the cytoplasm (PubMed:28077878). May act as a cellular sensor of membrane damage at sites of virus entry, which relocalizes to sites of membrane rupture upon virus unfection (PubMed:28077878). Facilitates safe passage of the RNA away from LGALS8, enabling viral genome translation by host ribosome (PubMed:28077878). May also be involved in initiating pore formation, increasing pore size or in maintaining pores for genome delivery (PubMed:28077878). The lipid-modifying enzyme activity is required for this process (PubMed:28077878).<ref>PMID:28077878</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Lecithin:retinol acyltransferase-like proteins, also referred to as HRAS-like tumor suppressors, comprise a vertebrate subfamily of papain-like or NlpC/P60 thiol proteases that function as phospholipid-metabolizing enzymes. HRAS-like tumor suppressor 3, a representative member of this group, plays a key role in regulating triglyceride accumulation and energy expenditure in adipocytes and therefore constitutes a novel pharmacological target for treatment of metabolic disorders causing obesity. Here, we delineate a catalytic mechanism common to lecithin:retinol acyltransferase-like proteins and provide evidence for their alternative robust lipid-dependent acyltransferase enzymatic activity. We also determined high resolution crystal structures of HRAS-like tumor suppressor 2 and 3 to gain insight into their active site architecture. Based on this structural analysis, two conformational states of the catalytic Cys-113 were identified that differ in reactivity and thus could define the catalytic properties of these two proteins. Finally, these structures provide a model for the topology of these enzymes and allow identification of the protein-lipid bilayer interface. This study contributes to the enzymatic and structural understanding of HRAS-like tumor suppressor enzymes.
 
Structural Basis for the Acyltransferase Activity of Lecithin:Retinol Acyltransferase-like Proteins.,Golczak M, Kiser PD, Sears AE, Lodowski DT, Blaner WS, Palczewski K J Biol Chem. 2012 Jul 6;287(28):23790-807. Epub 2012 May 17. PMID:22605381<ref>PMID:22605381</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4dot" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Latest revision as of 13:53, 1 March 2024

Crystal structure of human HRASLS3.Crystal structure of human HRASLS3.

Structural highlights

4dot is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.96Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PLAT3_HUMAN Exhibits both phospholipase A1/2 and acyltransferase activities (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381, PubMed:26503625). Shows phospholipase A1 (PLA1) and A2 (PLA2) activity, catalyzing the calcium-independent release of fatty acids from the sn-1 or sn-2 position of glycerophospholipids (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381, PubMed:22923616). For most substrates, PLA1 activity is much higher than PLA2 activity (PubMed:19615464). Shows O-acyltransferase activity,catalyzing the transfer of a fatty acyl group from glycerophospholipid to the hydroxyl group of lysophospholipid (PubMed:19615464). Shows N-acyltransferase activity, catalyzing the calcium-independent transfer of a fatty acyl group at the sn-1 position of phosphatidylcholine (PC) and other glycerophospholipids to the primary amine of phosphatidylethanolamine (PE), forming N-acylphosphatidylethanolamine (NAPE), which serves as precursor for N-acylethanolamines (NAEs) (PubMed:19615464, PubMed:19047760, PubMed:22825852, PubMed:22605381). Exhibits high N-acyltransferase activity and low phospholipase A1/2 activity (PubMed:22825852). Required for complete organelle rupture and degradation that occur during eye lens terminal differentiation, when fiber cells that compose the lens degrade all membrane-bound organelles in order to provide lens with transparency to allow the passage of light. Organelle membrane degradation is probably catalyzed by the phospholipase activity (By similarity).[UniProtKB:Q8R3U1][1] [2] [3] [4] [5] [6] (Microbial infection) Acts as a host factor for picornaviruses: required during early infection to promote viral genome release into the cytoplasm (PubMed:28077878). May act as a cellular sensor of membrane damage at sites of virus entry, which relocalizes to sites of membrane rupture upon virus unfection (PubMed:28077878). Facilitates safe passage of the RNA away from LGALS8, enabling viral genome translation by host ribosome (PubMed:28077878). May also be involved in initiating pore formation, increasing pore size or in maintaining pores for genome delivery (PubMed:28077878). The lipid-modifying enzyme activity is required for this process (PubMed:28077878).[7]

See Also

References

  1. Uyama T, Morishita J, Jin XH, Okamoto Y, Tsuboi K, Ueda N. The tumor suppressor gene H-Rev107 functions as a novel Ca2+-independent cytosolic phospholipase A1/2 of the thiol hydrolase type. J Lipid Res. 2009 Apr;50(4):685-93. doi: 10.1194/jlr.M800453-JLR200. Epub 2008, Dec 1. PMID:19047760 doi:http://dx.doi.org/10.1194/jlr.M800453-JLR200
  2. Uyama T, Jin XH, Tsuboi K, Tonai T, Ueda N. Characterization of the human tumor suppressors TIG3 and HRASLS2 as phospholipid-metabolizing enzymes. Biochim Biophys Acta. 2009 Dec;1791(12):1114-24. doi:, 10.1016/j.bbalip.2009.07.001. Epub 2009 Jul 14. PMID:19615464 doi:http://dx.doi.org/10.1016/j.bbalip.2009.07.001
  3. Golczak M, Kiser PD, Sears AE, Lodowski DT, Blaner WS, Palczewski K. Structural Basis for the Acyltransferase Activity of Lecithin:Retinol Acyltransferase-like Proteins. J Biol Chem. 2012 Jul 6;287(28):23790-807. Epub 2012 May 17. PMID:22605381 doi:10.1074/jbc.M112.361550
  4. Uyama T, Ikematsu N, Inoue M, Shinohara N, Jin XH, Tsuboi K, Tonai T, Tokumura A, Ueda N. Generation of N-acylphosphatidylethanolamine by members of the phospholipase A/acyltransferase (PLA/AT) family. J Biol Chem. 2012 Sep 14;287(38):31905-19. doi: 10.1074/jbc.M112.368712. Epub, 2012 Jul 23. PMID:22825852 doi:http://dx.doi.org/10.1074/jbc.M112.368712
  5. Pang XY, Cao J, Addington L, Lovell S, Battaile KP, Zhang N, Rao JL, Dennis EA, Moise AR. Structure/Function Relationships of Adipose Phospholipase A2 Containing a Cys-His-His Catalytic Triad. J Biol Chem. 2012 Aug 25. PMID:22923616 doi:http://dx.doi.org/10.1074/jbc.M112.398859
  6. Mardian EB, Bradley RM, Duncan RE. The HRASLS (PLA/AT) subfamily of enzymes. J Biomed Sci. 2015 Oct 26;22:99. doi: 10.1186/s12929-015-0210-7. PMID:26503625 doi:http://dx.doi.org/10.1186/s12929-015-0210-7
  7. Staring J, von Castelmur E, Blomen VA, van den Hengel LG, Brockmann M, Baggen J, Thibaut HJ, Nieuwenhuis J, Janssen H, van Kuppeveld FJ, Perrakis A, Carette JE, Brummelkamp TR. PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature. 2017 Jan 19;541(7637):412-416. doi: 10.1038/nature21032. Epub 2017 Jan, 11. PMID:28077878 doi:http://dx.doi.org/10.1038/nature21032

4dot, resolution 1.96Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA