3vcd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3vcd' size='340' side='right'caption='[[3vcd]], [[Resolution|resolution]] 2.35&Aring;' scene=''>
<StructureSection load='3vcd' size='340' side='right'caption='[[3vcd]], [[Resolution|resolution]] 2.35&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3vcd]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_cholerae-suis"_smith_1894 "bacillus cholerae-suis" smith 1894]. The September 2013 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Designed Protein Cages''  by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2013_9 10.2210/rcsb_pdb/mom_2013_9]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3VCD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3VCD FirstGlance]. <br>
<table><tr><td colspan='2'>[[3vcd]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Salmonella_enterica Salmonella enterica]. The September 2013 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Designed Protein Cages''  by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2013_9 10.2210/rcsb_pdb/mom_2013_9]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3VCD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3VCD FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.35&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3n79|3n79]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PduT ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=28901 "Bacillus cholerae-suis" Smith 1894])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3vcd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3vcd OCA], [https://pdbe.org/3vcd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3vcd RCSB], [https://www.ebi.ac.uk/pdbsum/3vcd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3vcd ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3vcd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3vcd OCA], [https://pdbe.org/3vcd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3vcd RCSB], [https://www.ebi.ac.uk/pdbsum/3vcd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3vcd ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Function ==
== Publication Abstract from PubMed ==
[https://www.uniprot.org/uniprot/PDUT_SALTY PDUT_SALTY] A minor shell protein of the bacterial microcompartment (BMC) dedicated to 1,2-propanediol (1,2-PD) degradation. The isolated BMC shell component protein ratio for J:A:B':B:K:T:U is approximately 15:10:7:6:1:1:2 (PubMed:12923081). Not required for structural integrity of BMCs nor to mitigate propionaldehyde toxicity, may selectively transport specific metabolites (PubMed:21239588). May be involved in electron transport across the BMC shell (Probable). Can be engineered to alter permeability of the BMC shell (PubMed:31674899).<ref>PMID:12923081</ref> <ref>PMID:21239588</ref> <ref>PMID:31674899</ref> <ref>PMID:20870711</ref>  The 1,2-PD-specific bacterial microcompartment (BMC) concentrates low levels of 1,2-PD catabolic enzymes, concentrates volatile reaction intermediates thus enhancing pathway flux and keeps the level of toxic, mutagenic propionaldehyde low.<ref>PMID:28475631</ref>  
We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method can be used to design a wide variety of self-assembling protein nanomaterials.
 
Computational design of self-assembling protein nanomaterials with atomic level accuracy.,King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, Andre I, Gonen T, Yeates TO, Baker D Science. 2012 Jun 1;336(6085):1171-4. PMID:22654060<ref>PMID:22654060</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3vcd" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacillus cholerae-suis smith 1894]]
[[Category: Designed Protein Cages]]
[[Category: Designed Protein Cages]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: Baker, D]]
[[Category: Salmonella enterica]]
[[Category: King, N P]]
[[Category: Baker D]]
[[Category: Sawaya, M R]]
[[Category: King NP]]
[[Category: Sheffler, W]]
[[Category: Sawaya MR]]
[[Category: Yeates, T O]]
[[Category: Sheffler W]]
[[Category: Electron transport]]
[[Category: Yeates TO]]
[[Category: Self assembling octahedral cage design]]

Latest revision as of 13:35, 1 March 2024

Computationally Designed Self-assembling Octahedral Cage protein, O333, Crystallized in space group R32Computationally Designed Self-assembling Octahedral Cage protein, O333, Crystallized in space group R32

Structural highlights

3vcd is a 8 chain structure with sequence from Salmonella enterica. The September 2013 RCSB PDB Molecule of the Month feature on Designed Protein Cages by David Goodsell is 10.2210/rcsb_pdb/mom_2013_9. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.35Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PDUT_SALTY A minor shell protein of the bacterial microcompartment (BMC) dedicated to 1,2-propanediol (1,2-PD) degradation. The isolated BMC shell component protein ratio for J:A:B':B:K:T:U is approximately 15:10:7:6:1:1:2 (PubMed:12923081). Not required for structural integrity of BMCs nor to mitigate propionaldehyde toxicity, may selectively transport specific metabolites (PubMed:21239588). May be involved in electron transport across the BMC shell (Probable). Can be engineered to alter permeability of the BMC shell (PubMed:31674899).[1] [2] [3] [4] The 1,2-PD-specific bacterial microcompartment (BMC) concentrates low levels of 1,2-PD catabolic enzymes, concentrates volatile reaction intermediates thus enhancing pathway flux and keeps the level of toxic, mutagenic propionaldehyde low.[5]

References

  1. Havemann GD, Bobik TA. Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol. 2003 Sep;185(17):5086-95. PMID:12923081
  2. Cheng S, Sinha S, Fan C, Liu Y, Bobik TA. Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella. J Bacteriol. 2011 Mar;193(6):1385-92. doi: 10.1128/JB.01473-10. Epub 2011 Jan 14. PMID:21239588 doi:http://dx.doi.org/10.1128/JB.01473-10
  3. Chowdhury C, Bobik TA. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella. Microbiology (Reading). 2019 Dec;165(12):1355-1364. doi: 10.1099/mic.0.000872. PMID:31674899 doi:http://dx.doi.org/10.1099/mic.0.000872
  4. Crowley CS, Cascio D, Sawaya MR, Kopstein JS, Bobik TA, Yeates TO. Structural insights into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell. J Biol Chem. 2010 Sep 24. PMID:20870711 doi:10.1074/jbc.M110.160580
  5. Jakobson CM, Tullman-Ercek D, Slininger MF, Mangan NM. A systems-level model reveals that 1,2-Propanediol utilization microcompartments enhance pathway flux through intermediate sequestration. PLoS Comput Biol. 2017 May 5;13(5):e1005525. doi: 10.1371/journal.pcbi.1005525., eCollection 2017 May. PMID:28475631 doi:http://dx.doi.org/10.1371/journal.pcbi.1005525

3vcd, resolution 2.35Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA