3kov: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Structure of MEF2A bound to DNA reveals a completely folded MADS-box/MEF2 domain that recognizes DNA and recruits transcription co-factors== | ==Structure of MEF2A bound to DNA reveals a completely folded MADS-box/MEF2 domain that recognizes DNA and recruits transcription co-factors== | ||
<StructureSection load='3kov' size='340' side='right' caption='[[3kov]], [[Resolution|resolution]] 2.90Å' scene=''> | <StructureSection load='3kov' size='340' side='right'caption='[[3kov]], [[Resolution|resolution]] 2.90Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3kov]] is a 8 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3kov]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KOV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3KOV FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3kov FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3kov OCA], [https://pdbe.org/3kov PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3kov RCSB], [https://www.ebi.ac.uk/pdbsum/3kov PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3kov ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/MEF2A_HUMAN MEF2A_HUMAN] Defects in MEF2A are a cause of coronary artery disease, autosomal dominant, type 1 (ADCAD1) [MIM:[https://omim.org/entry/608320 608320]. A common heart disease characterized by reduced or absent blood flow in one or more of the arteries that encircle and supply the heart. Its most important complication is acute myocardial infarction. | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/MEF2A_HUMAN MEF2A_HUMAN] Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation.<ref>PMID:9858528</ref> <ref>PMID:11904443</ref> <ref>PMID:12691662</ref> <ref>PMID:15834131</ref> <ref>PMID:16563226</ref> <ref>PMID:16371476</ref> <ref>PMID:16484498</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 21: | Line 21: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3kov ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3kov ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
==See Also== | ==See Also== | ||
Line 37: | Line 28: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Chen | [[Category: Large Structures]] | ||
[[Category: Dey | [[Category: Chen L]] | ||
[[Category: Han | [[Category: Dey R]] | ||
[[Category: Jayathilaka | [[Category: Han A]] | ||
[[Category: Philips | [[Category: Jayathilaka N]] | ||
[[Category: Wu | [[Category: Philips M]] | ||
[[Category: Ye | [[Category: Wu Y]] | ||
[[Category: Ye J]] | |||
Latest revision as of 13:17, 21 February 2024
Structure of MEF2A bound to DNA reveals a completely folded MADS-box/MEF2 domain that recognizes DNA and recruits transcription co-factorsStructure of MEF2A bound to DNA reveals a completely folded MADS-box/MEF2 domain that recognizes DNA and recruits transcription co-factors
Structural highlights
DiseaseMEF2A_HUMAN Defects in MEF2A are a cause of coronary artery disease, autosomal dominant, type 1 (ADCAD1) [MIM:608320. A common heart disease characterized by reduced or absent blood flow in one or more of the arteries that encircle and supply the heart. Its most important complication is acute myocardial infarction. FunctionMEF2A_HUMAN Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation.[1] [2] [3] [4] [5] [6] [7] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. See AlsoReferences
|
|