2pud: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='2pud' size='340' side='right'caption='[[2pud]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
<StructureSection load='2pud' size='340' side='right'caption='[[2pud]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2pud]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PUD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2PUD FirstGlance]. <br>
<table><tr><td colspan='2'>[[2pud]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PUD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2PUD FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HPA:HYPOXANTHINE'>HPA</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PURR ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HPA:HYPOXANTHINE'>HPA</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2pud FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2pud OCA], [https://pdbe.org/2pud PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2pud RCSB], [https://www.ebi.ac.uk/pdbsum/2pud PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2pud ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2pud FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2pud OCA], [https://pdbe.org/2pud PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2pud RCSB], [https://www.ebi.ac.uk/pdbsum/2pud PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2pud ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/PURR_ECOLI PURR_ECOLI]] Is the main repressor of the genes involved in the de novo synthesis of purine nucleotides, regulating purB, purC, purEK, purF, purHD, purL, purMN and guaBA expression. In addition, it participates in the regulation or coregulation of genes involved in de novo pyrimidine nucleotide biosynthesis, salvage and uptake (pyrC, pyrD, carAB and codBA), and of several genes encoding enzymes necessary for nucleotide and polyamine biosynthesis (prsA, glyA, gcvTHP, speA, glnB). Binds to a 16-bp palindromic sequence located within the promoter region of pur regulon genes. The consensus binding sequence is 5'-ACGCAAACGTTTTCNT-3'. PurR is allosterically activated to bind its cognate DNA by binding the purine corepressors, hypoxanthine or guanine, thereby effecting transcription repression.<ref>PMID:2404765</ref> <ref>PMID:2211500</ref> <ref>PMID:1400170</ref> <ref>PMID:14741201</ref>
[https://www.uniprot.org/uniprot/PURR_ECOLI PURR_ECOLI] Is the main repressor of the genes involved in the de novo synthesis of purine nucleotides, regulating purB, purC, purEK, purF, purHD, purL, purMN and guaBA expression. In addition, it participates in the regulation or coregulation of genes involved in de novo pyrimidine nucleotide biosynthesis, salvage and uptake (pyrC, pyrD, carAB and codBA), and of several genes encoding enzymes necessary for nucleotide and polyamine biosynthesis (prsA, glyA, gcvTHP, speA, glnB). Binds to a 16-bp palindromic sequence located within the promoter region of pur regulon genes. The consensus binding sequence is 5'-ACGCAAACGTTTTCNT-3'. PurR is allosterically activated to bind its cognate DNA by binding the purine corepressors, hypoxanthine or guanine, thereby effecting transcription repression.<ref>PMID:2404765</ref> <ref>PMID:2211500</ref> <ref>PMID:1400170</ref> <ref>PMID:14741201</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2pud ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2pud ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography. The bipartite structure of PurR consists of an amino-terminal DNA-binding domain and a larger carboxyl-terminal corepressor binding and dimerization domain that is similar to that of the bacterial periplasmic binding proteins. The DNA-binding domain contains a helix-turn-helix motif that makes base-specific contacts in the major groove of the DNA. Base contacts are also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. Critical to hinge helix-minor groove binding is the intercalation of the side chains of Leu54 and its symmetry-related mate, Leu54', into the central CpG-base pair step. These residues thereby act as "leucine levers" to pry open the minor groove and kink the purF operator by 45 degrees.
Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices.,Schumacher MA, Choi KY, Zalkin H, Brennan RG Science. 1994 Nov 4;266(5186):763-70. PMID:7973627<ref>PMID:7973627</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2pud" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 36: Line 27:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacillus coli migula 1895]]
[[Category: Escherichia coli]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Brennan, R G]]
[[Category: Brennan RG]]
[[Category: Choi, K Y]]
[[Category: Choi KY]]
[[Category: Schumacher, M A]]
[[Category: Schumacher MA]]
[[Category: Zalkin, H]]
[[Category: Zalkin H]]
[[Category: Dna-binding regulatory protein]]
[[Category: Transcription-dna complex]]

Latest revision as of 12:12, 21 February 2024

CRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICESCRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICES

Structural highlights

2pud is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PURR_ECOLI Is the main repressor of the genes involved in the de novo synthesis of purine nucleotides, regulating purB, purC, purEK, purF, purHD, purL, purMN and guaBA expression. In addition, it participates in the regulation or coregulation of genes involved in de novo pyrimidine nucleotide biosynthesis, salvage and uptake (pyrC, pyrD, carAB and codBA), and of several genes encoding enzymes necessary for nucleotide and polyamine biosynthesis (prsA, glyA, gcvTHP, speA, glnB). Binds to a 16-bp palindromic sequence located within the promoter region of pur regulon genes. The consensus binding sequence is 5'-ACGCAAACGTTTTCNT-3'. PurR is allosterically activated to bind its cognate DNA by binding the purine corepressors, hypoxanthine or guanine, thereby effecting transcription repression.[1] [2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Meng LM, Kilstrup M, Nygaard P. Autoregulation of PurR repressor synthesis and involvement of purR in the regulation of purB, purC, purL, purMN and guaBA expression in Escherichia coli. Eur J Biochem. 1990 Jan 26;187(2):373-9. PMID:2404765
  2. Rolfes RJ, Zalkin H. Purification of the Escherichia coli purine regulon repressor and identification of corepressors. J Bacteriol. 1990 Oct;172(10):5637-42. PMID:2211500
  3. Choi KY, Zalkin H. Structural characterization and corepressor binding of the Escherichia coli purine repressor. J Bacteriol. 1992 Oct;174(19):6207-14. PMID:1400170
  4. Devroede N, Thia-Toong TL, Gigot D, Maes D, Charlier D. Purine and pyrimidine-specific repression of the Escherichia coli carAB operon are functionally and structurally coupled. J Mol Biol. 2004 Feb 6;336(1):25-42. PMID:14741201

2pud, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA