1ozj: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='1ozj' size='340' side='right'caption='[[1ozj]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='1ozj' size='340' side='right'caption='[[1ozj]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1ozj]] is a 4 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1ozj]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1OZJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1OZJ FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ozj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ozj OCA], [https://pdbe.org/1ozj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ozj RCSB], [https://www.ebi.ac.uk/pdbsum/1ozj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ozj ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/SMAD3_HUMAN SMAD3_HUMAN] Defects in SMAD3 may be a cause of colorectal cancer (CRC) [MIM:[https://omim.org/entry/114500 114500]. Defects in SMAD3 are the cause of Loeys-Dietz syndrome 3 (LDS3) [MIM:[https://omim.org/entry/613795 613795]. An aortic aneurysm syndrome with widespread systemic involvement. The disorder is characterized by the triad of arterial tortuosity and aneurysms, hypertelorism, and bifid uvula or cleft palate. Patients with LDS3 also manifest early-onset osteoarthritis. They lack craniosynostosis and mental retardation. Note=SMAD3 mutations have been reported to be also associated with thoracic aortic aneurysms and dissection (TAAD) (PubMed:21778426). This phenotype is distinguised from LDS3 by having aneurysms restricted to thoracic aorta. As individuals carrying these mutations also exhibit aneurysms of other arteries, including abdominal aorta, iliac, and/or intracranial arteries (PubMed:21778426), they have been classified as LDS3 by the OMIM resource.<ref>PMID:21778426</ref> <ref>PMID:21217753</ref> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/SMAD3_HUMAN SMAD3_HUMAN] Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and migration of primary keratinocytes and by altering the TGF-mediated chemotaxis of monocytes. This effect on wound healing appears to be hormone-sensitive. Regulator of chondrogenesis and osteogenesis and inhibits early healing of bone fractures (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.<ref>PMID:9732876</ref> <ref>PMID:9892009</ref> <ref>PMID:10995748</ref> <ref>PMID:15241418</ref> <ref>PMID:15588252</ref> <ref>PMID:16156666</ref> <ref>PMID:16751101</ref> <ref>PMID:17327236</ref> <ref>PMID:16862174</ref> <ref>PMID:19289081</ref> <ref>PMID:19218245</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 23: | Line 22: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ozj ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ozj ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Chai | [[Category: Chai J]] | ||
[[Category: Massague | [[Category: Massague J]] | ||
[[Category: Pavletich | [[Category: Pavletich NP]] | ||
[[Category: Shi | [[Category: Shi Y]] | ||
[[Category: Wu | [[Category: Wu J-W]] | ||
[[Category: Yan | [[Category: Yan N]] | ||
Latest revision as of 11:04, 14 February 2024
Crystal structure of Smad3-MH1 bound to DNA at 2.4 A resolutionCrystal structure of Smad3-MH1 bound to DNA at 2.4 A resolution
Structural highlights
DiseaseSMAD3_HUMAN Defects in SMAD3 may be a cause of colorectal cancer (CRC) [MIM:114500. Defects in SMAD3 are the cause of Loeys-Dietz syndrome 3 (LDS3) [MIM:613795. An aortic aneurysm syndrome with widespread systemic involvement. The disorder is characterized by the triad of arterial tortuosity and aneurysms, hypertelorism, and bifid uvula or cleft palate. Patients with LDS3 also manifest early-onset osteoarthritis. They lack craniosynostosis and mental retardation. Note=SMAD3 mutations have been reported to be also associated with thoracic aortic aneurysms and dissection (TAAD) (PubMed:21778426). This phenotype is distinguised from LDS3 by having aneurysms restricted to thoracic aorta. As individuals carrying these mutations also exhibit aneurysms of other arteries, including abdominal aorta, iliac, and/or intracranial arteries (PubMed:21778426), they have been classified as LDS3 by the OMIM resource.[1] [2] FunctionSMAD3_HUMAN Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and migration of primary keratinocytes and by altering the TGF-mediated chemotaxis of monocytes. This effect on wound healing appears to be hormone-sensitive. Regulator of chondrogenesis and osteogenesis and inhibits early healing of bone fractures (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. References
|
|