1g88: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1g88]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G88 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1G88 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1g88]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G88 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1G88 FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1dd1|1dd1]]</div></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1g88 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g88 OCA], [https://pdbe.org/1g88 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1g88 RCSB], [https://www.ebi.ac.uk/pdbsum/1g88 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1g88 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1g88 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g88 OCA], [https://pdbe.org/1g88 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1g88 RCSB], [https://www.ebi.ac.uk/pdbsum/1g88 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1g88 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/SMAD4_HUMAN SMAD4_HUMAN]] Defects in SMAD4 are a cause of pancreatic cancer (PNCA) [MIM:[https://omim.org/entry/260350 260350]].  Defects in SMAD4 are a cause of juvenile polyposis syndrome (JPS) [MIM:[https://omim.org/entry/174900 174900]]; also known as juvenile intestinal polyposis (JIP). JPS is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. The lesions are typified by a smooth histological appearance, predominant stroma, cystic spaces and lack of a smooth muscle core. Multiple juvenile polyps usually occur in a number of Mendelian disorders. Sometimes, these polyps occur without associated features as in JPS; here, polyps tend to occur in the large bowel and are associated with an increased risk of colon and other gastrointestinal cancers.<ref>PMID:9811934</ref> <ref>PMID:12417513</ref>  Defects in SMAD4 are a cause of juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome (JP/HHT) [MIM:[https://omim.org/entry/175050 175050]]. JP/HHT syndrome phenotype consists of the coexistence of juvenile polyposis (JIP) and hereditary hemorrhagic telangiectasia (HHT) [MIM:[https://omim.org/entry/187300 187300]] in a single individual. JIP and HHT are autosomal dominant disorders with distinct and non-overlapping clinical features. The former, an inherited gastrointestinal malignancy predisposition, is caused by mutations in SMAD4 or BMPR1A, and the latter is a vascular malformation disorder caused by mutations in ENG or ACVRL1. All four genes encode proteins involved in the transforming-growth-factor-signaling pathway. Although there are reports of patients and families with phenotypes of both disorders combined, the genetic etiology of this association is unknown.  Defects in SMAD4 may be a cause of colorectal cancer (CRC) [MIM:[https://omim.org/entry/114500 114500]].  Defects in SMAD4 may be a cause of primary pulmonary hypertension (PPH1) [MIM:[https://omim.org/entry/178600 178600]]. A rare disorder characterized by plexiform lesions of proliferating endothelial cells in pulmonary arterioles. The lesions lead to elevated pulmonary arterial pression, right ventricular failure, and death. The disease can occur from infancy throughout life and it has a mean age at onset of 36 years. Penetrance is reduced. Although familial PPH1 is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs.<ref>PMID:21898662</ref>  Defects in SMAD4 are the cause of Myhre syndrome (MYHRS) [MIM:[https://omim.org/entry/139210 139210]]. MYHRS is a syndrome characterized by pre- and postnatal growth deficiency, mental retardation, generalized muscle hypertrophy and striking muscular build, decreased joint mobility, cryptorchidism, and unusual facies. Dysmorphic facial features include microcephaly, midface hypoplasia, prognathism, and blepharophimosis. Typical skeletal anomalies are short stature, square body shape, broad ribs, iliac hypoplasia, brachydactyly, flattened vertebrae, and thickened calvaria. Other features, such as congenital heart disease, may also occur.<ref>PMID:22243968</ref> <ref>PMID:22158539</ref>
[https://www.uniprot.org/uniprot/SMAD4_HUMAN SMAD4_HUMAN] Defects in SMAD4 are a cause of pancreatic cancer (PNCA) [MIM:[https://omim.org/entry/260350 260350].  Defects in SMAD4 are a cause of juvenile polyposis syndrome (JPS) [MIM:[https://omim.org/entry/174900 174900]; also known as juvenile intestinal polyposis (JIP). JPS is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. The lesions are typified by a smooth histological appearance, predominant stroma, cystic spaces and lack of a smooth muscle core. Multiple juvenile polyps usually occur in a number of Mendelian disorders. Sometimes, these polyps occur without associated features as in JPS; here, polyps tend to occur in the large bowel and are associated with an increased risk of colon and other gastrointestinal cancers.<ref>PMID:9811934</ref> <ref>PMID:12417513</ref>  Defects in SMAD4 are a cause of juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome (JP/HHT) [MIM:[https://omim.org/entry/175050 175050]. JP/HHT syndrome phenotype consists of the coexistence of juvenile polyposis (JIP) and hereditary hemorrhagic telangiectasia (HHT) [MIM:[https://omim.org/entry/187300 187300] in a single individual. JIP and HHT are autosomal dominant disorders with distinct and non-overlapping clinical features. The former, an inherited gastrointestinal malignancy predisposition, is caused by mutations in SMAD4 or BMPR1A, and the latter is a vascular malformation disorder caused by mutations in ENG or ACVRL1. All four genes encode proteins involved in the transforming-growth-factor-signaling pathway. Although there are reports of patients and families with phenotypes of both disorders combined, the genetic etiology of this association is unknown.  Defects in SMAD4 may be a cause of colorectal cancer (CRC) [MIM:[https://omim.org/entry/114500 114500].  Defects in SMAD4 may be a cause of primary pulmonary hypertension (PPH1) [MIM:[https://omim.org/entry/178600 178600]. A rare disorder characterized by plexiform lesions of proliferating endothelial cells in pulmonary arterioles. The lesions lead to elevated pulmonary arterial pression, right ventricular failure, and death. The disease can occur from infancy throughout life and it has a mean age at onset of 36 years. Penetrance is reduced. Although familial PPH1 is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs.<ref>PMID:21898662</ref>  Defects in SMAD4 are the cause of Myhre syndrome (MYHRS) [MIM:[https://omim.org/entry/139210 139210]. MYHRS is a syndrome characterized by pre- and postnatal growth deficiency, mental retardation, generalized muscle hypertrophy and striking muscular build, decreased joint mobility, cryptorchidism, and unusual facies. Dysmorphic facial features include microcephaly, midface hypoplasia, prognathism, and blepharophimosis. Typical skeletal anomalies are short stature, square body shape, broad ribs, iliac hypoplasia, brachydactyly, flattened vertebrae, and thickened calvaria. Other features, such as congenital heart disease, may also occur.<ref>PMID:22243968</ref> <ref>PMID:22158539</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/SMAD4_HUMAN SMAD4_HUMAN]] Common SMAD (co-SMAD) is the coactivator and mediator of signal transduction by TGF-beta (transforming growth factor). Component of the heterotrimeric SMAD2/SMAD3-SMAD4 complex that forms in the nucleus and is required for the TGF-mediated signaling. Promotes binding of the SMAD2/SMAD4/FAST-1 complex to DNA and provides an activation function required for SMAD1 or SMAD2 to stimulate transcription. Component of the multimeric SMAD3/SMAD4/JUN/FOS complex which forms at the AP1 promoter site; required for syngernistic transcriptional activity in response to TGF-beta. May act as a tumor suppressor. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.<ref>PMID:9389648</ref> <ref>PMID:17327236</ref>
[https://www.uniprot.org/uniprot/SMAD4_HUMAN SMAD4_HUMAN] Common SMAD (co-SMAD) is the coactivator and mediator of signal transduction by TGF-beta (transforming growth factor). Component of the heterotrimeric SMAD2/SMAD3-SMAD4 complex that forms in the nucleus and is required for the TGF-mediated signaling. Promotes binding of the SMAD2/SMAD4/FAST-1 complex to DNA and provides an activation function required for SMAD1 or SMAD2 to stimulate transcription. Component of the multimeric SMAD3/SMAD4/JUN/FOS complex which forms at the AP1 promoter site; required for syngernistic transcriptional activity in response to TGF-beta. May act as a tumor suppressor. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.<ref>PMID:9389648</ref> <ref>PMID:17327236</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 21:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1g88 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1g88 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Smad proteins mediate the transforming growth factor beta responses. C-terminal phosphorylation of R-Smads leads to the recruitment of Smad4 and the formation of active signaling complexes. We investigated the mechanism of phosphorylation-induced Smad complex formation with an activating pseudo-phosphorylated Smad3. Pseudo-phosphorylated Smad3 has a greater propensity to homotrimerize, and recruits Smad4 to form a heterotrimer containing two Smad3 and one Smad4. The trimeric interaction is mediated through conserved interfaces to which tumorigenic mutations map. Furthermore, a conserved Arg residue within the L3 loop, located near the C-terminal phosphorylation sites of the neighboring subunit, is essential for trimerization. We propose that the phosphorylated C-terminal residues interact with the L3 loop of the neighboring subunit to stabilize the trimer interaction.
The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization.,Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K Nat Struct Biol. 2001 Mar;8(3):248-53. PMID:11224571<ref>PMID:11224571</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1g88" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
Line 36: Line 27:
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Chako, B M]]
[[Category: Chako BM]]
[[Category: Correia, J J]]
[[Category: Correia JJ]]
[[Category: Lam, S S]]
[[Category: Lam SS]]
[[Category: Lin, K]]
[[Category: Lin K]]
[[Category: Qin, B]]
[[Category: Qin B]]
[[Category: L3 loop mutant]]
[[Category: Transcription]]
[[Category: Transcriptional factor]]

Latest revision as of 10:23, 7 February 2024

S4AFL3ARG515 MUTANTS4AFL3ARG515 MUTANT

Structural highlights

1g88 is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

SMAD4_HUMAN Defects in SMAD4 are a cause of pancreatic cancer (PNCA) [MIM:260350. Defects in SMAD4 are a cause of juvenile polyposis syndrome (JPS) [MIM:174900; also known as juvenile intestinal polyposis (JIP). JPS is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. The lesions are typified by a smooth histological appearance, predominant stroma, cystic spaces and lack of a smooth muscle core. Multiple juvenile polyps usually occur in a number of Mendelian disorders. Sometimes, these polyps occur without associated features as in JPS; here, polyps tend to occur in the large bowel and are associated with an increased risk of colon and other gastrointestinal cancers.[1] [2] Defects in SMAD4 are a cause of juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome (JP/HHT) [MIM:175050. JP/HHT syndrome phenotype consists of the coexistence of juvenile polyposis (JIP) and hereditary hemorrhagic telangiectasia (HHT) [MIM:187300 in a single individual. JIP and HHT are autosomal dominant disorders with distinct and non-overlapping clinical features. The former, an inherited gastrointestinal malignancy predisposition, is caused by mutations in SMAD4 or BMPR1A, and the latter is a vascular malformation disorder caused by mutations in ENG or ACVRL1. All four genes encode proteins involved in the transforming-growth-factor-signaling pathway. Although there are reports of patients and families with phenotypes of both disorders combined, the genetic etiology of this association is unknown. Defects in SMAD4 may be a cause of colorectal cancer (CRC) [MIM:114500. Defects in SMAD4 may be a cause of primary pulmonary hypertension (PPH1) [MIM:178600. A rare disorder characterized by plexiform lesions of proliferating endothelial cells in pulmonary arterioles. The lesions lead to elevated pulmonary arterial pression, right ventricular failure, and death. The disease can occur from infancy throughout life and it has a mean age at onset of 36 years. Penetrance is reduced. Although familial PPH1 is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs.[3] Defects in SMAD4 are the cause of Myhre syndrome (MYHRS) [MIM:139210. MYHRS is a syndrome characterized by pre- and postnatal growth deficiency, mental retardation, generalized muscle hypertrophy and striking muscular build, decreased joint mobility, cryptorchidism, and unusual facies. Dysmorphic facial features include microcephaly, midface hypoplasia, prognathism, and blepharophimosis. Typical skeletal anomalies are short stature, square body shape, broad ribs, iliac hypoplasia, brachydactyly, flattened vertebrae, and thickened calvaria. Other features, such as congenital heart disease, may also occur.[4] [5]

Function

SMAD4_HUMAN Common SMAD (co-SMAD) is the coactivator and mediator of signal transduction by TGF-beta (transforming growth factor). Component of the heterotrimeric SMAD2/SMAD3-SMAD4 complex that forms in the nucleus and is required for the TGF-mediated signaling. Promotes binding of the SMAD2/SMAD4/FAST-1 complex to DNA and provides an activation function required for SMAD1 or SMAD2 to stimulate transcription. Component of the multimeric SMAD3/SMAD4/JUN/FOS complex which forms at the AP1 promoter site; required for syngernistic transcriptional activity in response to TGF-beta. May act as a tumor suppressor. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.[6] [7]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

References

  1. Houlston R, Bevan S, Williams A, Young J, Dunlop M, Rozen P, Eng C, Markie D, Woodford-Richens K, Rodriguez-Bigas MA, Leggett B, Neale K, Phillips R, Sheridan E, Hodgson S, Iwama T, Eccles D, Bodmer W, Tomlinson I. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum Mol Genet. 1998 Nov;7(12):1907-12. PMID:9811934
  2. Sayed MG, Ahmed AF, Ringold JR, Anderson ME, Bair JL, Mitros FA, Lynch HT, Tinley ST, Petersen GM, Giardiello FM, Vogelstein B, Howe JR. Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol. 2002 Nov;9(9):901-6. PMID:12417513
  3. Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, Bradshaw TY, Southgate L, Lee GJ, Jackson I, Lord GM, Gibbs JS, Wilkins MR, Ohta-Ogo K, Nakamura K, Girerd B, Coulet F, Soubrier F, Humbert M, Morrell NW, Trembath RC, Machado RD. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat. 2011 Dec;32(12):1385-9. doi: 10.1002/humu.21605. Epub 2011 Oct 11. PMID:21898662 doi:10.1002/humu.21605
  4. Caputo V, Cianetti L, Niceta M, Carta C, Ciolfi A, Bocchinfuso G, Carrani E, Dentici ML, Biamino E, Belligni E, Garavelli L, Boccone L, Melis D, Andria G, Gelb BD, Stella L, Silengo M, Dallapiccola B, Tartaglia M. A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies Myhre syndrome. Am J Hum Genet. 2012 Jan 13;90(1):161-9. doi: 10.1016/j.ajhg.2011.12.011. PMID:22243968 doi:10.1016/j.ajhg.2011.12.011
  5. Le Goff C, Mahaut C, Abhyankar A, Le Goff W, Serre V, Afenjar A, Destree A, di Rocco M, Heron D, Jacquemont S, Marlin S, Simon M, Tolmie J, Verloes A, Casanova JL, Munnich A, Cormier-Daire V. Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet. 2011 Dec 11;44(1):85-8. doi: 10.1038/ng.1016. PMID:22158539 doi:10.1038/ng.1016
  6. Liu F, Pouponnot C, Massague J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 1997 Dec 1;11(23):3157-67. PMID:9389648
  7. Seong HA, Jung H, Kim KT, Ha H. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins. J Biol Chem. 2007 Apr 20;282(16):12272-89. Epub 2007 Feb 27. PMID:17327236 doi:10.1074/jbc.M609279200

1g88, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA