1fws: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='1fws' size='340' side='right'caption='[[1fws]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
<StructureSection load='1fws' size='340' side='right'caption='[[1fws]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1fws]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"aquifex_aeolicus"_huber_and_stetter_2001 "aquifex aeolicus" huber and stetter 2001]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FWS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FWS FirstGlance]. <br>
<table><tr><td colspan='2'>[[1fws]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Aquifex_aeolicus Aquifex aeolicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FWS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FWS FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=PEP:PHOSPHOENOLPYRUVATE'>PEP</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1fwn|1fwn]], [[1fwt|1fwt]], [[1fww|1fww]], [[1fx6|1fx6]], [[1fxp|1fxp]], [[1fxq|1fxq]], [[1fy6|1fy6]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=PEP:PHOSPHOENOLPYRUVATE'>PEP</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/3-deoxy-8-phosphooctulonate_synthase 3-deoxy-8-phosphooctulonate synthase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.55 2.5.1.55] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1fws FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fws OCA], [https://pdbe.org/1fws PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1fws RCSB], [https://www.ebi.ac.uk/pdbsum/1fws PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1fws ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1fws FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fws OCA], [https://pdbe.org/1fws PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1fws RCSB], [https://www.ebi.ac.uk/pdbsum/1fws PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1fws ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/KDSA_AQUAE KDSA_AQUAE]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 19: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1fws ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1fws ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Aquifex aeolicus 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) is active with a variety of different divalent metal ions bound in the active site. The Cd(2+), Zn(2+), and Cu(2+) substituted enzymes display similar values of k(cat) and similar dependence of K(m)(PEP) and K(m)(A5P) on both substrate and product concentrations. However, the flux-control coefficients for some of the catalytically relevant reaction steps are different in the presence of Zn(2+) or Cu(2+), suggesting that the type of metal bound in the active site affects the behavior of the enzyme in vivo. The type of metal also affects the rate of product release in the crystal environment. For example, the crystal structure of the Cu(2+) enzyme incubated with phosphoenolpyruvate (PEP) and arabinose 5-phosphate (A5P) shows the formed product, 3-deoxy-d-manno-octulosonate 8-phosphate (KDO8P), still bound in the active site in its linear conformation. This observation completes our structural studies of the condensation reaction, which altogether have provided high-resolution structures for the reactants, the intermediate, and the product bound forms of KDO8PS. The crystal structures of the Cd(2+), Zn(2+), and Cu(2+) substituted enzymes show four residues (Cys-11, His-185, Glu-222, and Asp-233) and a water molecule as possible metal ligands. Combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations reveal that the metal centers have a delocalized electronic structure, and that their true geometry is square pyramidal for Cd(2+) and Zn(2+) and distorted octahedral or distorted tetrahedral for Cu(2+). These geometries are different from those obtained by QM optimization in the gas phase (tetrahedral for Cd(2+) and Zn(2+), distorted tetrahedral for Cu(2+)) and may represent conformations of the metal center that minimize the reorganization energy between the substrate-bound and product-bound states. The QM/MM calculations also show that when only PEP is bound to the enzyme the electronic structure of the metal center is optimized to prevent a wasteful reaction of PEP with water.
Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis.,Kona F, Tao P, Martin P, Xu X, Gatti DL Biochemistry. 2009 Apr 28;48(16):3610-30. PMID:19228070<ref>PMID:19228070</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1fws" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Kdo-8-phosphate synthase|Kdo-8-phosphate synthase]]
*[[Kdo-8-phosphate synthase|Kdo-8-phosphate synthase]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Aquifex aeolicus huber and stetter 2001]]
[[Category: Aquifex aeolicus]]
[[Category: 3-deoxy-8-phosphooctulonate synthase]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Duewel, H S]]
[[Category: Duewel HS]]
[[Category: Gatti, D L]]
[[Category: Gatti DL]]
[[Category: Radaev, S]]
[[Category: Radaev S]]
[[Category: Wang, J]]
[[Category: Wang J]]
[[Category: Woodard, R W]]
[[Category: Woodard RW]]
[[Category: A5p]]
[[Category: Beta/alpha barrel]]
[[Category: Kdo]]
[[Category: Kdo8p]]
[[Category: Lyase]]
[[Category: Pep]]

Latest revision as of 10:19, 7 February 2024

AQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH PEP AND CADMIUMAQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH PEP AND CADMIUM

Structural highlights

1fws is a 2 chain structure with sequence from Aquifex aeolicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KDSA_AQUAE

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

1fws, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA