7o2v: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==AURORA KINASE A IN COMPLEX WITH THE AUR-A/PDK1 INHIBITOR VI8== | ==AURORA KINASE A IN COMPLEX WITH THE AUR-A/PDK1 INHIBITOR VI8== | ||
<StructureSection load='7o2v' size='340' side='right'caption='[[7o2v]]' scene=''> | <StructureSection load='7o2v' size='340' side='right'caption='[[7o2v]], [[Resolution|resolution]] 3.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7O2V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7O2V FirstGlance]. <br> | <table><tr><td colspan='2'>[[7o2v]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7O2V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7O2V FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7o2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7o2v OCA], [https://pdbe.org/7o2v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7o2v RCSB], [https://www.ebi.ac.uk/pdbsum/7o2v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7o2v ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=V0K:1-[[3,4-bis(fluoranyl)phenyl]methyl]-~{N}-[(1~{R})-2-[[(3~{E})-3-(1~{H}-imidazol-5-ylmethylidene)-2-oxidanylidene-1~{H}-indol-5-yl]amino]-2-oxidanylidene-1-phenyl-ethyl]-6-methyl-2-oxidanylidene-pyridine-3-carboxamide'>V0K</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7o2v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7o2v OCA], [https://pdbe.org/7o2v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7o2v RCSB], [https://www.ebi.ac.uk/pdbsum/7o2v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7o2v ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/AURKA_HUMAN AURKA_HUMAN] Mitotic serine/threonine kinases that contributes to the regulation of cell cycle progression. Associates with the centrosome and the spindle microtubules during mitosis and plays a critical role in various mitotic events including the establishment of mitotic spindle, centrosome duplication, centrosome separation as well as maturation, chromosomal alignment, spindle assembly checkpoint, and cytokinesis. Required for initial activation of CDK1 at centrosomes. Phosphorylates numerous target proteins, including ARHGEF2, BORA, BRCA1, CDC25B, DLGP5, HDAC6, KIF2A, LATS2, NDEL1, PARD3, PPP1R2, PLK1, RASSF1, TACC3, p53/TP53 and TPX2. Regulates KIF2A tubulin depolymerase activity. Required for normal axon formation. Plays a role in microtubule remodeling during neurite extension. Important for microtubule formation and/or stabilization. Also acts as a key regulatory component of the p53/TP53 pathway, and particularly the checkpoint-response pathways critical for oncogenic transformation of cells, by phosphorylating and stabilizing p53/TP53. Phosphorylates its own inhibitors, the protein phosphatase type 1 (PP1) isoforms, to inhibit their activity. Necessary for proper cilia disassembly prior to mitosis.<ref>PMID:9606188</ref> <ref>PMID:11039908</ref> <ref>PMID:11551964</ref> <ref>PMID:12390251</ref> <ref>PMID:13678582</ref> <ref>PMID:14523000</ref> <ref>PMID:15147269</ref> <ref>PMID:14990569</ref> <ref>PMID:15128871</ref> <ref>PMID:14702041</ref> <ref>PMID:15987997</ref> <ref>PMID:18056443</ref> <ref>PMID:17604723</ref> <ref>PMID:17360485</ref> <ref>PMID:18615013</ref> <ref>PMID:19812038</ref> <ref>PMID:19351716</ref> <ref>PMID:19668197</ref> <ref>PMID:19357306</ref> <ref>PMID:20643351</ref> <ref>PMID:17125279</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
We report the synthesis of novel first-in-class 2-oxindole-based derivatives as dual PDK1-AurA kinase inhibitors as a novel strategy to treat Ewing sarcoma. The most potent compound 12 is suitable for progression to in vivo studies. The specific attributes of 12 included nanomolar inhibitory potency against both phosphoinositide-dependent kinase-1 (PDK1) and Aurora A (AurA) kinase, with acceptable in vitro ADME-Tox properties (cytotoxicity in 2 healthy and 14 hematological and solid cancer cell-lines; inhibition of PDE4C1, SIRT7, HDAC4, HDAC6, HDAC8, HDAC9, AurB, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and hERG). X-ray crystallography and docking studies led to the identification of the key AurA and PDK1/12 interactions. Finally, in vitro drug-intake kinetics and in vivo PK appear to indicate that these compounds are attractive lead-structures for the design and synthesis of PDK1/AurA dual-target molecules to further investigate the in vivo efficacy against Ewing Sarcoma. | |||
Development of potent dual PDK1/AurA kinase inhibitors for cancer therapy: Lead-optimization, structural insights, and ADME-Tox profile.,Sestito S, Bacci A, Chiarugi S, Runfola M, Gado F, Margheritis E, Gul S, Riveiro ME, Vazquez R, Huguet S, Manera C, Rezai K, Garau G, Rapposelli S Eur J Med Chem. 2021 Oct 5;226:113895. doi: 10.1016/j.ejmech.2021.113895. PMID:34624821<ref>PMID:34624821</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7o2v" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Serine/threonine protein kinase 3D structures|Serine/threonine protein kinase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Garau G]] | [[Category: Garau G]] |
Latest revision as of 15:43, 1 February 2024
AURORA KINASE A IN COMPLEX WITH THE AUR-A/PDK1 INHIBITOR VI8AURORA KINASE A IN COMPLEX WITH THE AUR-A/PDK1 INHIBITOR VI8
Structural highlights
FunctionAURKA_HUMAN Mitotic serine/threonine kinases that contributes to the regulation of cell cycle progression. Associates with the centrosome and the spindle microtubules during mitosis and plays a critical role in various mitotic events including the establishment of mitotic spindle, centrosome duplication, centrosome separation as well as maturation, chromosomal alignment, spindle assembly checkpoint, and cytokinesis. Required for initial activation of CDK1 at centrosomes. Phosphorylates numerous target proteins, including ARHGEF2, BORA, BRCA1, CDC25B, DLGP5, HDAC6, KIF2A, LATS2, NDEL1, PARD3, PPP1R2, PLK1, RASSF1, TACC3, p53/TP53 and TPX2. Regulates KIF2A tubulin depolymerase activity. Required for normal axon formation. Plays a role in microtubule remodeling during neurite extension. Important for microtubule formation and/or stabilization. Also acts as a key regulatory component of the p53/TP53 pathway, and particularly the checkpoint-response pathways critical for oncogenic transformation of cells, by phosphorylating and stabilizing p53/TP53. Phosphorylates its own inhibitors, the protein phosphatase type 1 (PP1) isoforms, to inhibit their activity. Necessary for proper cilia disassembly prior to mitosis.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] Publication Abstract from PubMedWe report the synthesis of novel first-in-class 2-oxindole-based derivatives as dual PDK1-AurA kinase inhibitors as a novel strategy to treat Ewing sarcoma. The most potent compound 12 is suitable for progression to in vivo studies. The specific attributes of 12 included nanomolar inhibitory potency against both phosphoinositide-dependent kinase-1 (PDK1) and Aurora A (AurA) kinase, with acceptable in vitro ADME-Tox properties (cytotoxicity in 2 healthy and 14 hematological and solid cancer cell-lines; inhibition of PDE4C1, SIRT7, HDAC4, HDAC6, HDAC8, HDAC9, AurB, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and hERG). X-ray crystallography and docking studies led to the identification of the key AurA and PDK1/12 interactions. Finally, in vitro drug-intake kinetics and in vivo PK appear to indicate that these compounds are attractive lead-structures for the design and synthesis of PDK1/AurA dual-target molecules to further investigate the in vivo efficacy against Ewing Sarcoma. Development of potent dual PDK1/AurA kinase inhibitors for cancer therapy: Lead-optimization, structural insights, and ADME-Tox profile.,Sestito S, Bacci A, Chiarugi S, Runfola M, Gado F, Margheritis E, Gul S, Riveiro ME, Vazquez R, Huguet S, Manera C, Rezai K, Garau G, Rapposelli S Eur J Med Chem. 2021 Oct 5;226:113895. doi: 10.1016/j.ejmech.2021.113895. PMID:34624821[22] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|