5pn0: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='5pn0' size='340' side='right'caption='[[5pn0]], [[Resolution|resolution]] 1.14Å' scene=''> | <StructureSection load='5pn0' size='340' side='right'caption='[[5pn0]], [[Resolution|resolution]] 1.14Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5pn0]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[5pn0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5PN0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5PN0 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=OGA:N-OXALYLGLYCINE'>OGA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.14Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=OGA:N-OXALYLGLYCINE'>OGA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5pn0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5pn0 OCA], [https://pdbe.org/5pn0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5pn0 RCSB], [https://www.ebi.ac.uk/pdbsum/5pn0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5pn0 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/KDM4D_HUMAN KDM4D_HUMAN] Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys-20'. Demethylates both di- and trimethylated H3 'Lys-9' residue, while it has no activity on monomethylated residues. Demethylation of Lys residue generates formaldehyde and succinate.<ref>PMID:16603238</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 26: | Line 26: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Arrowsmith | [[Category: Arrowsmith CH]] | ||
[[Category: Bountra | [[Category: Bountra C]] | ||
[[Category: Bradley | [[Category: Bradley AR]] | ||
[[Category: Brandao-Neto | [[Category: Brandao-Neto J]] | ||
[[Category: Brennan | [[Category: Brennan PE]] | ||
[[Category: Burgess-Brown | [[Category: Burgess-Brown N]] | ||
[[Category: Collins | [[Category: Collins P]] | ||
[[Category: Cox | [[Category: Cox O]] | ||
[[Category: Dias A]] | |||
[[Category: Dias | [[Category: Douangamath A]] | ||
[[Category: Douangamath | [[Category: Edwards A]] | ||
[[Category: Edwards | [[Category: Fairhead M]] | ||
[[Category: Fairhead | [[Category: Krojer T]] | ||
[[Category: Krojer | [[Category: MacLean E]] | ||
[[Category: MacLean | [[Category: Ng J]] | ||
[[Category: Ng | [[Category: Oppermann U]] | ||
[[Category: Oppermann | [[Category: Pearce NM]] | ||
[[Category: Pearce | [[Category: Renjie Z]] | ||
[[Category: Renjie | [[Category: Sethi R]] | ||
[[Category: Sethi | [[Category: Szykowska A]] | ||
[[Category: Szykowska | [[Category: Talon R]] | ||
[[Category: Talon | [[Category: Vollmar M]] | ||
[[Category: Vollmar | [[Category: Wright N]] | ||
[[Category: Wright | [[Category: Von Delft F]] | ||
[[Category: | |||
Revision as of 16:03, 17 January 2024
PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 194)PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 194)
Structural highlights
FunctionKDM4D_HUMAN Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys-20'. Demethylates both di- and trimethylated H3 'Lys-9' residue, while it has no activity on monomethylated residues. Demethylation of Lys residue generates formaldehyde and succinate.[1] Publication Abstract from PubMedIn macromolecular crystallography, the rigorous detection of changed states (for example, ligand binding) is difficult unless signal is strong. Ambiguous ('weak' or 'noisy') density is experimentally common, since molecular states are generally only fractionally present in the crystal. Existing methodologies focus on generating maximally accurate maps whereby minor states become discernible; in practice, such map interpretation is disappointingly subjective, time-consuming and methodologically unsound. Here we report the PanDDA method, which automatically reveals clear electron density for the changed state-even from inaccurate maps-by subtracting a proportion of the confounding 'ground state'; changed states are objectively identified from statistical analysis of density distributions. The method is completely general, implying new best practice for all changed-state studies, including the routine collection of multiple ground-state crystals. More generally, these results demonstrate: the incompleteness of atomic models; that single data sets contain insufficient information to model them fully; and that accuracy requires further map-deconvolution approaches. A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density.,Pearce NM, Krojer T, Bradley AR, Collins P, Nowak RP, Talon R, Marsden BD, Kelm S, Shi J, Deane CM, von Delft F Nat Commun. 2017 Apr 24;8:15123. doi: 10.1038/ncomms15123. PMID:28436492[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|