4v5l: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4v5l]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12] and [https://en.wikipedia.org/wiki/Thermus_thermophilus_HB8 Thermus thermophilus HB8]. This structure supersedes the now removed PDB entries [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2xqd 2xqd] and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2xqe 2xqe]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4V5L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4V5L FirstGlance]. <br> | <table><tr><td colspan='2'>[[4v5l]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12] and [https://en.wikipedia.org/wiki/Thermus_thermophilus_HB8 Thermus thermophilus HB8]. This structure supersedes the now removed PDB entries [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2xqd 2xqd] and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2xqe 2xqe]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4V5L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4V5L FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4SU:4-THIOURIDINE-5-MONOPHOSPHATE'>4SU</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=GCP:PHOSPHOMETHYLPHOSPHONIC+ACID+GUANYLATE+ESTER'>GCP</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MIA:2-METHYLTHIO-N6-ISOPENTENYL-ADENOSINE-5-MONOPHOSPHATE'>MIA</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=PAR:PAROMOMYCIN'>PAR</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4SU:4-THIOURIDINE-5-MONOPHOSPHATE'>4SU</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=GCP:PHOSPHOMETHYLPHOSPHONIC+ACID+GUANYLATE+ESTER'>GCP</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MIA:2-METHYLTHIO-N6-ISOPENTENYL-ADENOSINE-5-MONOPHOSPHATE'>MIA</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=PAR:PAROMOMYCIN'>PAR</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4v5l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v5l OCA], [https://pdbe.org/4v5l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4v5l RCSB], [https://www.ebi.ac.uk/pdbsum/4v5l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4v5l ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4v5l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v5l OCA], [https://pdbe.org/4v5l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4v5l RCSB], [https://www.ebi.ac.uk/pdbsum/4v5l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4v5l ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 21: | Line 22: | ||
==See Also== | ==See Also== | ||
*[[Elongation factor 3D structures|Elongation factor 3D structures]] | *[[Elongation factor 3D structures|Elongation factor 3D structures]] | ||
*[[Ribosomal protein THX 3D structures|Ribosomal protein THX 3D structures]] | |||
*[[Ribosome 3D structures|Ribosome 3D structures]] | *[[Ribosome 3D structures|Ribosome 3D structures]] | ||
*[[Transfer RNA (tRNA)|Transfer RNA (tRNA)]] | *[[Transfer RNA (tRNA)|Transfer RNA (tRNA)]] |
Latest revision as of 13:40, 10 January 2024
The structure of EF-Tu and aminoacyl-tRNA bound to the 70S ribosome with a GTP analogThe structure of EF-Tu and aminoacyl-tRNA bound to the 70S ribosome with a GTP analog
Structural highlights
FunctionRS12_THET8 With S4 and S5 plays an important role in translational accuracy (By similarity).[HAMAP-Rule:MF_00403_B] Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_00403_B] Publication Abstract from PubMedProtein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl-transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resolution. EF-Tu is in its active conformation, the switch I loop is ordered, and the catalytic histidine is coordinating the nucleophilic water in position for inline attack on the gamma-phosphate of GTP. This activated conformation is due to a critical and conserved interaction of the histidine with A2662 of the sarcin-ricin loop of the 23S ribosomal RNA. The structure suggests a universal mechanism for GTPase activation and hydrolysis in translational GTPases on the ribosome. The mechanism for activation of GTP hydrolysis on the ribosome.,Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V Science. 2010 Nov 5;330(6005):835-8. PMID:21051640[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See Also
References
|
|