1geh: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1geh]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_kodakarensis_KOD1 Thermococcus kodakarensis KOD1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GEH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GEH FirstGlance]. <br> | <table><tr><td colspan='2'>[[1geh]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermococcus_kodakarensis_KOD1 Thermococcus kodakarensis KOD1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GEH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GEH FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1geh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1geh OCA], [https://pdbe.org/1geh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1geh RCSB], [https://www.ebi.ac.uk/pdbsum/1geh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1geh ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1geh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1geh OCA], [https://pdbe.org/1geh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1geh RCSB], [https://www.ebi.ac.uk/pdbsum/1geh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1geh ProSAT]</span></td></tr> | ||
</table> | </table> |
Latest revision as of 02:30, 28 December 2023
CRYSTAL STRUCTURE OF ARCHAEAL RUBISCO (RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE)CRYSTAL STRUCTURE OF ARCHAEAL RUBISCO (RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE)
Structural highlights
FunctionRBL_THEKO Catalyzes the addition of molecular CO(2) and H(2)O to ribulose 1,5-bisphosphate (RuBP), generating two molecules of 3-phosphoglycerate (3-PGA). Functions in an archaeal AMP degradation pathway, together with AMP phosphorylase and R15P isomerase.[HAMAP-Rule:MF_01133][1] [2] [3] Publication Abstract from PubMedBACKGROUND: Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme of the Calvin-Benson cycle and catalyzes the primary reaction of CO2 fixation in plants, algae, and bacteria. Rubiscos have been so far classified into two types. Type I is composed of eight large subunits (L subunits) and eight small subunits (S subunits) with tetragonal symmetry (L8S8), but type II is usually composed only of two L subunits (L2). Recently, some genuinely active Rubiscos of unknown physiological function have been reported from archaea. RESULTS: The crystal structure of Rubisco from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (Tk-Rubisco) was determined at 2.8 A resolution. The enzyme is composed only of L subunits and showed a novel (L2)5 decameric structure. Compared to previously known type I enzymes, each L2 dimer is inclined approximately 16 degrees to form a toroid-shaped decamer with its unique L2-L2 interfaces. Differential scanning calorimetry (DSC), circular dichroism (CD), and gel permeation chromatography (GPC) showed that Tk-Rubisco maintains its secondary structure and decameric assembly even at high temperatures. CONCLUSIONS: The present study provides the first structure of an archaeal Rubisco, an unprecedented (L2)5 decamer. Biochemical studies indicate that Tk-Rubisco maintains its decameric structure at high temperatures. The structure is distinct from type I and type II Rubiscos and strongly supports that Tk-Rubisco should be classified as a novel type III Rubisco. Crystal structure of a novel-type archaeal rubisco with pentagonal symmetry.,Kitano K, Maeda N, Fukui T, Atomi H, Imanaka T, Miki K Structure. 2001 Jun;9(6):473-81. PMID:11435112[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|