1bzk: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==STRUCTURAL STUDIES ON THE EFFECTS OF THE DELETION IN THE RED CELL ANION EXCHANGER (BAND3, AE1) ASSOCIATED WITH SOUTH EAST ASIAN OVALOCYTOSIS.== | ==STRUCTURAL STUDIES ON THE EFFECTS OF THE DELETION IN THE RED CELL ANION EXCHANGER (BAND3, AE1) ASSOCIATED WITH SOUTH EAST ASIAN OVALOCYTOSIS.== | ||
<StructureSection load='1bzk' size='340' side='right'caption='[[1bzk | <StructureSection load='1bzk' size='340' side='right'caption='[[1bzk]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1bzk]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BZK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BZK FirstGlance]. <br> | <table><tr><td colspan='2'>[[1bzk]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BZK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BZK FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bzk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bzk OCA], [https://pdbe.org/1bzk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bzk RCSB], [https://www.ebi.ac.uk/pdbsum/1bzk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bzk ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bzk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bzk OCA], [https://pdbe.org/1bzk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bzk RCSB], [https://www.ebi.ac.uk/pdbsum/1bzk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bzk ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[https://www.uniprot.org/uniprot/B3AT_HUMAN B3AT_HUMAN] Defects in SLC4A1 are the cause of elliptocytosis type 4 (EL4) [MIM:[https://omim.org/entry/109270 109270]. EL4 is a Rhesus-unlinked form of hereditary elliptocytosis, a genetically heterogeneous, autosomal dominant hematologic disorder. It is characterized by variable hemolytic anemia and elliptical or oval red cell shape.<ref>PMID:1722314</ref> <ref>PMID:1538405</ref> Defects in SLC4A1 are the cause of spherocytosis type 4 (SPH4) [MIM:[https://omim.org/entry/612653 612653]; also known as hereditary spherocytosis type 4 (HS4). Spherocytosis is a hematologic disorder leading to chronic hemolytic anemia and characterized by numerous abnormally shaped erythrocytes which are generally spheroidal.<ref>PMID:8547122</ref> <ref>PMID:1378323</ref> <ref>PMID:7530501</ref> <ref>PMID:8943874</ref> <ref>PMID:8640229</ref> <ref>PMID:9207478</ref> <ref>PMID:9012689</ref> <ref>PMID:9233560</ref> <ref>PMID:9973643</ref> <ref>PMID:10580570</ref> <ref>PMID:10942416</ref> <ref>PMID:10745622</ref> <ref>PMID:11380459</ref> <ref>PMID:15813913</ref> <ref>PMID:16227998</ref> Defects in SLC4A1 are the cause of renal tubular acidosis, distal, autosomal dominant (AD-dRTA) [MIM:[https://omim.org/entry/179800 179800]. A disease characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Defects in SLC4A1 are the cause of renal tubular acidosis, distal, with hemolytic anemia (dRTA-HA) [MIM:[https://omim.org/entry/611590 611590]. A disease characterized by the association of hemolytic anemia with distal renal tubular acidosis, the reduced ability to acidify urine resulting in variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Defects in SLC4A1 are the cause of renal tubular acidosis, distal, with normal red cell morphology (dRTA-NRC) [MIM:[https://omim.org/entry/611590 611590]. A disease characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. | |||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/B3AT_HUMAN B3AT_HUMAN] Band 3 is the major integral glycoprotein of the erythrocyte membrane. Band 3 has two functional domains. Its integral domain mediates a 1:1 exchange of inorganic anions across the membrane, whereas its cytoplasmic domain provides binding sites for cytoskeletal proteins, glycolytic enzymes, and hemoglobin. | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 34: | Line 35: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Bloomberg | [[Category: Bloomberg GB]] | ||
[[Category: Chambers | [[Category: Chambers EJ]] | ||
[[Category: Ring | [[Category: Ring SM]] | ||
[[Category: Tanner | [[Category: Tanner MJA]] | ||
Latest revision as of 02:22, 28 December 2023
STRUCTURAL STUDIES ON THE EFFECTS OF THE DELETION IN THE RED CELL ANION EXCHANGER (BAND3, AE1) ASSOCIATED WITH SOUTH EAST ASIAN OVALOCYTOSIS.STRUCTURAL STUDIES ON THE EFFECTS OF THE DELETION IN THE RED CELL ANION EXCHANGER (BAND3, AE1) ASSOCIATED WITH SOUTH EAST ASIAN OVALOCYTOSIS.
Structural highlights
DiseaseB3AT_HUMAN Defects in SLC4A1 are the cause of elliptocytosis type 4 (EL4) [MIM:109270. EL4 is a Rhesus-unlinked form of hereditary elliptocytosis, a genetically heterogeneous, autosomal dominant hematologic disorder. It is characterized by variable hemolytic anemia and elliptical or oval red cell shape.[1] [2] Defects in SLC4A1 are the cause of spherocytosis type 4 (SPH4) [MIM:612653; also known as hereditary spherocytosis type 4 (HS4). Spherocytosis is a hematologic disorder leading to chronic hemolytic anemia and characterized by numerous abnormally shaped erythrocytes which are generally spheroidal.[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] Defects in SLC4A1 are the cause of renal tubular acidosis, distal, autosomal dominant (AD-dRTA) [MIM:179800. A disease characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Defects in SLC4A1 are the cause of renal tubular acidosis, distal, with hemolytic anemia (dRTA-HA) [MIM:611590. A disease characterized by the association of hemolytic anemia with distal renal tubular acidosis, the reduced ability to acidify urine resulting in variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Defects in SLC4A1 are the cause of renal tubular acidosis, distal, with normal red cell morphology (dRTA-NRC) [MIM:611590. A disease characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. FunctionB3AT_HUMAN Band 3 is the major integral glycoprotein of the erythrocyte membrane. Band 3 has two functional domains. Its integral domain mediates a 1:1 exchange of inorganic anions across the membrane, whereas its cytoplasmic domain provides binding sites for cytoskeletal proteins, glycolytic enzymes, and hemoglobin. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe have carried out a solution-state NMR study of synthetic peptides patterned on the first membrane span of normal human band 3, and the same region of the mutant band 3 present in Southeast Asian ovalocytosis (SAO) which has a nine amino acid deletion. In 1:1 (v/v) chloroform/methanol, the 42 residue normal peptide (R389-K430) consisted of three helical regions. The slow solvent exchange of backbone amide protons revealed the helix from P403 to A416 was more stable than the "cytoplasmic" N-terminal helix from P391 to A400. These helices were separated by a sharp bend at P403, which is probably located at the boundary between the cytoplasmic domain and the first transmembrane span. The SAO deletion (A400-A408) removed the bend at P403, to leave a stable helix from P391 to A416 containing the residuum of the normal first transmembrane helix and with a hydrophobic turn replaced by a polar turn in the SAO peptide. Insertion of fragments of normal band 3 and band 3 SAO into microsomal membranes was investigated using a cell free translation system. A fragment composed of the cytoplasmic domain and the putative first membrane domain of normal band 3 (B3(1)) inserted stably into the membrane. However, the corresponding fragment of band 3 SAO [SAO(1)] did not integrate stably into membranes. Our results suggest that in SAO band 3, the region of the first membrane span of normal band 3 does not integrate properly into the membrane because it lacks a sufficiently long hydrophobic segment, and the deletion also disrupts a conserved structural subdomain at the membrane surface. Structural studies on the effects of the deletion in the red cell anion exchanger (band 3, AE1) associated with South East Asian ovalocytosis.,Chambers EJ, Bloomberg GB, Ring SM, Tanner MJ J Mol Biol. 1999 Jan 22;285(3):1289-307. PMID:9887277[18] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|