4cnr: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4cnr]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CNR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4CNR FirstGlance]. <br> | <table><tr><td colspan='2'>[[4cnr]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CNR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4CNR FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.29Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4cnr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cnr OCA], [https://pdbe.org/4cnr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4cnr RCSB], [https://www.ebi.ac.uk/pdbsum/4cnr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4cnr ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4cnr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cnr OCA], [https://pdbe.org/4cnr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4cnr RCSB], [https://www.ebi.ac.uk/pdbsum/4cnr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4cnr ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/CAH2_BOVIN CAH2_BOVIN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Latest revision as of 15:13, 20 December 2023
Surface residue engineering of bovine carbonic anhydrase to an extreme halophilic enzyme for potential application in postcombustion CO2 captureSurface residue engineering of bovine carbonic anhydrase to an extreme halophilic enzyme for potential application in postcombustion CO2 capture
Structural highlights
FunctionCAH2_BOVIN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Publication Abstract from PubMedEnzymes expressed by highly salt-tolerant organisms show many modifications compared with salt-affected counterparts including biased amino acid and lower alpha-helix content, lower solvent accessibility and negative surface charge. Here, we show that halotolerance can be generated in an enzyme solely by modifying surface residues. Rational design of carbonic anhydrase II is undertaken in three stages replacing 18 residues in total, crystal structures confirm changes are confined to surface residues. Catalytic activities and thermal unfolding temperatures of the designed enzymes increase at high salt concentrations demonstrating their shift to halotolerance, whereas the opposite response is found in the wild-type enzyme. Molecular dynamics calculations reveal a key role for sodium ions in increasing halotolerant enzyme stability largely through interactions with the highly ordered first Na(+) hydration shell. For the first time, an approach to generate extreme halotolerance, a trait with broad application in industrial biocatalysis, in a wild-type enzyme is demonstrated. Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst.,Warden AC, Williams M, Peat TS, Seabrook SA, Newman J, Dojchinov G, Haritos VS Nat Commun. 2015 Dec 21;6:10278. doi: 10.1038/ncomms10278. PMID:26687908[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|