4c06: Difference between revisions

No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4c06]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4C06 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4C06 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4c06]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4C06 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4C06 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4c06 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4c06 OCA], [https://pdbe.org/4c06 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4c06 RCSB], [https://www.ebi.ac.uk/pdbsum/4c06 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4c06 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4c06 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4c06 OCA], [https://pdbe.org/4c06 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4c06 RCSB], [https://www.ebi.ac.uk/pdbsum/4c06 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4c06 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/ANM6_MOUSE ANM6_MOUSE]] Arginine methyltransferase that can catalyze the formation of both omega-N monomethylarginine (MMA) and asymmetrical dimethylarginine (aDMA), with a strong preference for the formation of aDMA. Preferentially methylates arginyl residues present in a glycine and arginine-rich domain and displays preference for monomethylated substrates. Specifically mediates the asymmetric dimethylation of histone H3 'Arg-2' to form H3R2me2a. H3R2me2a represents a specific tag for epigenetic transcriptional repression and is mutually exclusive with methylation on histone H3 'Lys-4' (H3K4me2 and H3K4me3). Acts as a transcriptional repressor of various genes such as HOXA2, THBS1 and TP53. Repression of TP53 blocks cellular senescence. Also methylates histone H2A and H4 'Arg-3' (H2AR3me and H4R3me, respectively). Acts as a regulator of DNA base excision during DNA repair by mediating the methylation of DNA polymerase beta (POLB), leading to the stimulation of its polymerase activity by enhancing DNA binding and processivity. Methylates HMGA1. Regulates alternative splicing events. Acts as a transcriptional coactivator of a number of steroid hormone receptors including ESR1, ESR2, PGR and NR3C1. Promotes fasting-induced transcriptional activation of the gluconeogenic program through methylation of the CRTC2 transcription coactivator.<ref>PMID:22904064</ref> <ref>PMID:24570487</ref>  
[https://www.uniprot.org/uniprot/ANM6_MOUSE ANM6_MOUSE] Arginine methyltransferase that can catalyze the formation of both omega-N monomethylarginine (MMA) and asymmetrical dimethylarginine (aDMA), with a strong preference for the formation of aDMA. Preferentially methylates arginyl residues present in a glycine and arginine-rich domain and displays preference for monomethylated substrates. Specifically mediates the asymmetric dimethylation of histone H3 'Arg-2' to form H3R2me2a. H3R2me2a represents a specific tag for epigenetic transcriptional repression and is mutually exclusive with methylation on histone H3 'Lys-4' (H3K4me2 and H3K4me3). Acts as a transcriptional repressor of various genes such as HOXA2, THBS1 and TP53. Repression of TP53 blocks cellular senescence. Also methylates histone H2A and H4 'Arg-3' (H2AR3me and H4R3me, respectively). Acts as a regulator of DNA base excision during DNA repair by mediating the methylation of DNA polymerase beta (POLB), leading to the stimulation of its polymerase activity by enhancing DNA binding and processivity. Methylates HMGA1. Regulates alternative splicing events. Acts as a transcriptional coactivator of a number of steroid hormone receptors including ESR1, ESR2, PGR and NR3C1. Promotes fasting-induced transcriptional activation of the gluconeogenic program through methylation of the CRTC2 transcription coactivator.<ref>PMID:22904064</ref> <ref>PMID:24570487</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
PRMT6 is a protein arginine methyltransferase involved in transcriptional regulation, human immunodeficiency virus pathogenesis, DNA base excision repair, and cell cycle progression. Like other PRMTs, PRMT6 is overexpressed in several cancer types and is therefore considered as a potential anti-cancer drug target. In the present study, we described six crystal structures of PRMT6 from Mus musculus, solved and refined at 1.34A for the highest resolution structure. The crystal structures revealed that the folding of the helix alphaX is required to stabilize a productive active site before methylation of the bound peptide can occur. In the absence of cofactor, metal cations can be found in the catalytic pocket at the expected position of the guanidinium moiety of the target arginine substrate. Using mass spectrometry under native conditions, we show that PRMT6 dimer binds two cofactor and a single H4 peptide molecules. Finally, we characterized a new site of in vitro automethylation of mouse PRMT6 at position 7.
 
Functional insights from high resolution structures of mouse protein arginine methyltransferase 6.,Bonnefond L, Stojko J, Mailliot J, Troffer-Charlier N, Cura V, Wurtz JM, Cianferani S, Cavarelli J J Struct Biol. 2015 Jun 18. pii: S1047-8477(15)30021-6. doi:, 10.1016/j.jsb.2015.06.017. PMID:26094878<ref>PMID:26094878</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4c06" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA