7wik: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7wik]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_smegmatis_MC2_155 Mycolicibacterium smegmatis MC2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7WIK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7WIK FirstGlance]. <br> | <table><tr><td colspan='2'>[[7wik]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycolicibacterium_smegmatis_MC2_155 Mycolicibacterium smegmatis MC2 155]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7WIK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7WIK FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.87Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7wik FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7wik OCA], [https://pdbe.org/7wik PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7wik RCSB], [https://www.ebi.ac.uk/pdbsum/7wik PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7wik ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7wik FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7wik OCA], [https://pdbe.org/7wik PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7wik RCSB], [https://www.ebi.ac.uk/pdbsum/7wik PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7wik ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 18: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 7wik" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 7wik" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> |
Latest revision as of 20:41, 29 November 2023
Crystal structure of oligoribonuclease of Mycobacterium smegmatis mc2 155Crystal structure of oligoribonuclease of Mycobacterium smegmatis mc2 155
Structural highlights
FunctionA0R1E6_MYCS2 3'-to-5' exoribonuclease specific for small oligoribonucleotides.[HAMAP-Rule:MF_00045] Publication Abstract from PubMedOligoribonucleases (Orns) are highly conserved DnaQ-fold 3'-5' exoribonucleases that have been found to carry out the last step of cyclic-di-GMP (c-di-GMP) degradation, that is, pGpG to GMP in several bacteria. Removal of pGpG is critical for c-di-GMP homeostasis, as excess uncleaved pGpG can have feedback inhibition on phosphodiesterases, thereby perturbing cellular signaling pathways regulated by c-di-GMP. Perturbation of c-di-GMP levels not only affects survival under hypoxic, reductive stress, or nutrient-limiting conditions but also affects pathogenicity in infection models as well as antibiotic response in mycobacteria. Here, we have determined the crystal structure of MSMEG_4724, the Orn of Mycobacterium smegmatis (Ms_orn) to 1.87 A resolution to investigate the function of its extended C-terminal tail that is unique among bacterial Orns. Ms_orn is a homodimer with the canonical RNase-H fold of exoribonucleases and conserved catalytic residues in the active site. Further examination of the substrate-binding site with a modeled pGpG emphasized the role of a phosphate cap and "3'OH cap" in constricting a 2-mer substrate in the active site. The unique C-terminal tail of Ms_orn aids dimerization by forming a handshake-like flap over the second protomer of the dimer. Our thermal and denaturant-induced unfolding experiments suggest that it helps in higher stability of Ms_orn as compared with Escherichia coli Orn or a C-terminal deletion mutant. We also show that the C-terminal tail is required for modulating response to stress agents in vivo. These results will help in further evaluating the role of signaling and regulation by c-di-GMP in mycobacteria. Three-dimensional structure of a mycobacterial oligoribonuclease reveals a unique C-terminal tail that stabilizes the homodimer.,Badhwar P, Khan SH, Taneja B J Biol Chem. 2022 Oct 14;298(12):102595. doi: 10.1016/j.jbc.2022.102595. PMID:36244449[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|