7epe: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='7epe' size='340' side='right'caption='[[7epe]], [[Resolution|resolution]] 2.50Å' scene=''> | <StructureSection load='7epe' size='340' side='right'caption='[[7epe]], [[Resolution|resolution]] 2.50Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7epe]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[7epe]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7EPE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7EPE FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=J9R:4-(1-methylpyrazol-4-yl)-7-[[(2~{S})-2-(trifluoromethyl)morpholin-4-yl]methyl]quinoline-2-carboxamide'>J9R</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=J9R:4-(1-methylpyrazol-4-yl)-7-[[(2~{S})-2-(trifluoromethyl)morpholin-4-yl]methyl]quinoline-2-carboxamide'>J9R</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7epe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7epe OCA], [https://pdbe.org/7epe PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7epe RCSB], [https://www.ebi.ac.uk/pdbsum/7epe PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7epe ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7epe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7epe OCA], [https://pdbe.org/7epe PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7epe RCSB], [https://www.ebi.ac.uk/pdbsum/7epe PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7epe ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/FLAV_DESVH FLAV_DESVH] Low-potential electron donor to a number of redox enzymes.[https://www.uniprot.org/uniprot/GRM2_HUMAN GRM2_HUMAN] G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. May mediate suppression of neurotransmission or may be involved in synaptogenesis or synaptic stabilization.<ref>PMID:18297054</ref> <ref>PMID:22300836</ref> <ref>PMID:23129762</ref> <ref>PMID:7620613</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 16: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 7epe" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 7epe" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Metabotropic glutamate receptor 3D structures|Metabotropic glutamate receptor 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Du | [[Category: Du J]] | ||
[[Category: Han | [[Category: Han S]] | ||
[[Category: Lin | [[Category: Lin S]] | ||
[[Category: Wang | [[Category: Wang D]] | ||
[[Category: Wu | [[Category: Wu B]] | ||
[[Category: Zhao | [[Category: Zhao Q]] | ||
Revision as of 19:59, 29 November 2023
Crystal structure of mGlu2 bound to NAM563Crystal structure of mGlu2 bound to NAM563
Structural highlights
FunctionFLAV_DESVH Low-potential electron donor to a number of redox enzymes.GRM2_HUMAN G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. May mediate suppression of neurotransmission or may be involved in synaptogenesis or synaptic stabilization.[1] [2] [3] [4] Publication Abstract from PubMedThe metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system(1). These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties(2-4). Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation. Structures of human mGlu2 and mGlu7 homo- and heterodimers.,Du J, Wang D, Fan H, Xu C, Tai L, Lin S, Han S, Tan Q, Wang X, Xu T, Zhang H, Chu X, Yi C, Liu P, Wang X, Zhou Y, Pin JP, Rondard P, Liu H, Liu J, Sun F, Wu B, Zhao Q Nature. 2021 Jun;594(7864):589-593. doi: 10.1038/s41586-021-03641-w. Epub 2021, Jun 16. PMID:34135509[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|