3nvd: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Structure of YBBD in complex with pugnac== | ==Structure of YBBD in complex with pugnac== | ||
<StructureSection load='3nvd' size='340' side='right' caption='[[3nvd]], [[Resolution|resolution]] 1.84Å' scene=''> | <StructureSection load='3nvd' size='340' side='right'caption='[[3nvd]], [[Resolution|resolution]] 1.84Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3nvd]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3nvd]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=3cqm 3cqm]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NVD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3NVD FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=OAN:O-(2-ACETAMIDO-2-DEOXY+D-GLUCOPYRANOSYLIDENE)+AMINO-N-PHENYLCARBAMATE'>OAN</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.836Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=OAN:O-(2-ACETAMIDO-2-DEOXY+D-GLUCOPYRANOSYLIDENE)+AMINO-N-PHENYLCARBAMATE'>OAN</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3nvd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3nvd OCA], [https://pdbe.org/3nvd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3nvd RCSB], [https://www.ebi.ac.uk/pdbsum/3nvd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3nvd ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/NAGZ_BACSU NAGZ_BACSU] Plays a role in peptidoglycan recycling by cleaving the terminal beta-1,4-linked N-acetylglucosamine (GlcNAc) from peptide-linked peptidoglycan fragments, giving rise to free GlcNAc, anhydro-N-acetylmuramic acid and anhydro-N-acetylmuramic acid-linked peptides. Cleaves muropeptides, but not peptidoglycan.<ref>PMID:20400549</ref> <ref>PMID:20826810</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 33: | Line 33: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Bacillus subtilis]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Diederichs | [[Category: Diederichs K]] | ||
Latest revision as of 19:51, 1 November 2023
Structure of YBBD in complex with pugnacStructure of YBBD in complex with pugnac
Structural highlights
FunctionNAGZ_BACSU Plays a role in peptidoglycan recycling by cleaving the terminal beta-1,4-linked N-acetylglucosamine (GlcNAc) from peptide-linked peptidoglycan fragments, giving rise to free GlcNAc, anhydro-N-acetylmuramic acid and anhydro-N-acetylmuramic acid-linked peptides. Cleaves muropeptides, but not peptidoglycan.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThree-dimensional structures of NagZ of Bacillus subtilis, the first structures of a two-domain beta-N-acetylglucosaminidase of family 3 of glycosidases, were determined with and without the transition state mimicking inhibitor PUGNAc bound to the active site, at 1.84- and 1.40-A resolution, respectively. The structures together with kinetic analyses of mutants revealed an Asp-His dyad involved in catalysis: His(234) of BsNagZ acts as general acid/base catalyst and is hydrogen bonded by Asp(232) for proper function. Replacement of both His(234) and Asp(232) with glycine reduced the rate of hydrolysis of the fluorogenic substrate 4'-methylumbelliferyl N-acetyl-beta-D-glucosaminide 1900- and 4500-fold, respectively, and rendered activity pH-independent in the alkaline range consistent with a role of these residues in acid/base catalysis. N-Acetylglucosaminyl enzyme intermediate accumulated in the H234G mutant and beta-azide product was formed in the presence of sodium azide in both mutants. The Asp-His dyad is conserved within beta-N-acetylglucosaminidases but otherwise absent in beta-glycosidases of family 3, which instead carry a "classical" glutamate acid/base catalyst. The acid/base glutamate of Hordeum vulgare exoglucanase (Exo1) superimposes with His(234) of the dyad of BsNagZ and, in contrast to the latter, protrudes from a second domain of the enzyme into the active site. This is the first report of an Asp-His catalytic dyad involved in hydrolysis of glycosides resembling in function the Asp-His-Ser triad of serine proteases. Our findings will facilitate the development of mechanism-based inhibitors that selectively target family 3 beta-N-acetylglucosaminidases, which are involved in bacterial cell wall turnover, spore germination, and induction of beta-lactamase. Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism.,Litzinger S, Fischer S, Polzer P, Diederichs K, Welte W, Mayer C J Biol Chem. 2010 Nov 12;285(46):35675-84. Epub 2010 Sep 7. PMID:20826810[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|