8pxl: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:
'''Unreleased structure'''


The entry 8pxl is ON HOLD  until Paper Publication
==Structure of NADH-DEPENDENT FERREDOXIN REDUCTASE, BPHA4, solved at wavelength 1.37 A==
<StructureSection load='8pxl' size='340' side='right'caption='[[8pxl]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[8pxl]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_sp._KKS102 Pseudomonas sp. KKS102]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8PXL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8PXL FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8pxl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8pxl OCA], [https://pdbe.org/8pxl PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8pxl RCSB], [https://www.ebi.ac.uk/pdbsum/8pxl PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8pxl ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/Q52437_PSES1 Q52437_PSES1]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 A wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to lambda = 5.9 A. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.


Authors:  
Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.,El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, Wagner A Commun Chem. 2023 Oct 12;6(1):219. doi: 10.1038/s42004-023-01014-0. PMID:37828292<ref>PMID:37828292</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 8pxl" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Pseudomonas sp. KKS102]]
[[Category: Duman R]]
[[Category: El Omari K]]
[[Category: Kawano Y]]
[[Category: Matsugaki N]]
[[Category: Mykhaylyk V]]
[[Category: Orr C]]
[[Category: Senda M]]
[[Category: Wagner A]]

Latest revision as of 10:07, 25 October 2023

Structure of NADH-DEPENDENT FERREDOXIN REDUCTASE, BPHA4, solved at wavelength 1.37 AStructure of NADH-DEPENDENT FERREDOXIN REDUCTASE, BPHA4, solved at wavelength 1.37 A

Structural highlights

8pxl is a 1 chain structure with sequence from Pseudomonas sp. KKS102. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q52437_PSES1

Publication Abstract from PubMed

Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 A wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to lambda = 5.9 A. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.

Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.,El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, Wagner A Commun Chem. 2023 Oct 12;6(1):219. doi: 10.1038/s42004-023-01014-0. PMID:37828292[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. El Omari K, Duman R, Mykhaylyk V, Orr CM, Latimer-Smith M, Winter G, Grama V, Qu F, Bountra K, Kwong HS, Romano M, Reis RI, Vogeley L, Vecchia L, Owen CD, Wittmann S, Renner M, Senda M, Matsugaki N, Kawano Y, Bowden TA, Moraes I, Grimes JM, Mancini EJ, Walsh MA, Guzzo CR, Owens RJ, Jones EY, Brown DG, Stuart DI, Beis K, Wagner A. Experimental phasing opportunities for macromolecular crystallography at very long wavelengths. Commun Chem. 2023 Oct 12;6(1):219. PMID:37828292 doi:10.1038/s42004-023-01014-0

8pxl, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA