7s8h: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==== | ==Structure of Lassa virus glycoprotein bound to Fab 18.5C and Fab 36.1F== | ||
<StructureSection load='7s8h' size='340' side='right'caption='[[7s8h]]' scene=''> | <StructureSection load='7s8h' size='340' side='right'caption='[[7s8h]], [[Resolution|resolution]] 2.70Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id= OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol= FirstGlance]. <br> | <table><tr><td colspan='2'>[[7s8h]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Lassa_virus_Josiah Lassa virus Josiah]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7S8H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7S8H FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7s8h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7s8h OCA], [https://pdbe.org/7s8h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7s8h RCSB], [https://www.ebi.ac.uk/pdbsum/7s8h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7s8h ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7s8h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7s8h OCA], [https://pdbe.org/7s8h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7s8h RCSB], [https://www.ebi.ac.uk/pdbsum/7s8h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7s8h ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/GLYC_LASSJ GLYC_LASSJ] Stable signal peptide (SSP) is cleaved but is apparently retained as the third component of the GP complex. The SSP is required for efficient glycoprotein expression, post-translational cleavage of GP1 and GP2, glycoprotein transport to the cell plasma membrane, formation of infectious virus particles, and acid pH-dependent glycoprotein-mediated cell fusion. The GP complex interacts with host glycosylated LAMP1 to mediate efficient infection.<ref>PMID:24970085</ref> Glycoprotein G1 mediates virus attachment to host receptor alpha-dystroglycan DAG1. This attachment induces virion internalization predominantly through clathrin- and caveolin-independent endocytosis. Glycoprotein G2 is a class I viral fusion protein, that directs fusion of viral and host endosomal membranes, leading to delivery of the nucleocapsid into the cytoplasm. Membrane fusion is mediated by irreversable conformational changes induced upon acidification in the endosome (By similarity). | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Lassa virus (LASV) is the etiologic agent of Lassa Fever, a hemorrhagic disease that is endemic to West Africa. During LASV infection, LASV glycoprotein (GP) engages with multiple host receptors for cell entry. Neutralizing antibodies against GP are rare and principally target quaternary epitopes displayed only on the metastable, pre-fusion conformation of GP. Currently, the structural features of the neutralizing GPC-A antibody competition group are understudied. Structures of two GPC-A antibodies presented here demonstrate that they bind the side of the pre-fusion GP trimer, bridging the GP1 and GP2 subunits. Complementary biochemical analyses indicate that antibody 25.10C, which is broadly specific, neutralizes by inhibiting binding of the endosomal receptor LAMP1 and also by blocking membrane fusion. The other GPC-A antibody, 36.1F, which is lineage-specific, prevents LAMP1 association only. These data illuminate a site of vulnerability on LASV GP and will guide efforts to elicit broadly reactive therapeutics and vaccines. | |||
Delineating the mechanism of anti-Lassa virus GPC-A neutralizing antibodies.,Enriquez AS, Buck TK, Li H, Norris MJ, Moon-Walker A, Zandonatti MA, Harkins SS, Robinson JE, Branco LM, Garry RF, Saphire EO, Hastie KM Cell Rep. 2022 May 24;39(8):110841. doi: 10.1016/j.celrep.2022.110841. PMID:35613585<ref>PMID:35613585</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7s8h" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Antibody 3D structures|Antibody 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Lassa virus Josiah]] | ||
[[Category: Enriquez AS]] | |||
[[Category: Hastie KM]] |
Latest revision as of 19:46, 18 October 2023
Structure of Lassa virus glycoprotein bound to Fab 18.5C and Fab 36.1FStructure of Lassa virus glycoprotein bound to Fab 18.5C and Fab 36.1F
Structural highlights
FunctionGLYC_LASSJ Stable signal peptide (SSP) is cleaved but is apparently retained as the third component of the GP complex. The SSP is required for efficient glycoprotein expression, post-translational cleavage of GP1 and GP2, glycoprotein transport to the cell plasma membrane, formation of infectious virus particles, and acid pH-dependent glycoprotein-mediated cell fusion. The GP complex interacts with host glycosylated LAMP1 to mediate efficient infection.[1] Glycoprotein G1 mediates virus attachment to host receptor alpha-dystroglycan DAG1. This attachment induces virion internalization predominantly through clathrin- and caveolin-independent endocytosis. Glycoprotein G2 is a class I viral fusion protein, that directs fusion of viral and host endosomal membranes, leading to delivery of the nucleocapsid into the cytoplasm. Membrane fusion is mediated by irreversable conformational changes induced upon acidification in the endosome (By similarity). Publication Abstract from PubMedLassa virus (LASV) is the etiologic agent of Lassa Fever, a hemorrhagic disease that is endemic to West Africa. During LASV infection, LASV glycoprotein (GP) engages with multiple host receptors for cell entry. Neutralizing antibodies against GP are rare and principally target quaternary epitopes displayed only on the metastable, pre-fusion conformation of GP. Currently, the structural features of the neutralizing GPC-A antibody competition group are understudied. Structures of two GPC-A antibodies presented here demonstrate that they bind the side of the pre-fusion GP trimer, bridging the GP1 and GP2 subunits. Complementary biochemical analyses indicate that antibody 25.10C, which is broadly specific, neutralizes by inhibiting binding of the endosomal receptor LAMP1 and also by blocking membrane fusion. The other GPC-A antibody, 36.1F, which is lineage-specific, prevents LAMP1 association only. These data illuminate a site of vulnerability on LASV GP and will guide efforts to elicit broadly reactive therapeutics and vaccines. Delineating the mechanism of anti-Lassa virus GPC-A neutralizing antibodies.,Enriquez AS, Buck TK, Li H, Norris MJ, Moon-Walker A, Zandonatti MA, Harkins SS, Robinson JE, Branco LM, Garry RF, Saphire EO, Hastie KM Cell Rep. 2022 May 24;39(8):110841. doi: 10.1016/j.celrep.2022.110841. PMID:35613585[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|