7lha: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:


==Structure of the Exo-L-galactose-6-sulfatase BuS1_11 from Bacteroides uniformis==
==Structure of the Exo-L-galactose-6-sulfatase BuS1_11 from Bacteroides uniformis==
<StructureSection load='7lha' size='340' side='right'caption='[[7lha]]' scene=''>
<StructureSection load='7lha' size='340' side='right'caption='[[7lha]], [[Resolution|resolution]] 1.95&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7LHA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7LHA FirstGlance]. <br>
<table><tr><td colspan='2'>[[7lha]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacteroides_uniformis Bacteroides uniformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7LHA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7LHA FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7lha FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7lha OCA], [https://pdbe.org/7lha PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7lha RCSB], [https://www.ebi.ac.uk/pdbsum/7lha PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7lha ProSAT]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.95&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7lha FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7lha OCA], [https://pdbe.org/7lha PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7lha RCSB], [https://www.ebi.ac.uk/pdbsum/7lha PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7lha ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/A0A4Y1VMZ7_BACUN A0A4Y1VMZ7_BACUN]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroides uniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients.
Metabolism of a hybrid algal galactan by members of the human gut microbiome.,Robb CS, Hobbs JK, Pluvinage B, Reintjes G, Klassen L, Monteith S, Giljan G, Amundsen C, Vickers C, Hettle AG, Hills R, Nitin, Xing X, Montina T, Zandberg WF, Abbott DW, Boraston AB Nat Chem Biol. 2022 Mar 14. pii: 10.1038/s41589-022-00983-y. doi:, 10.1038/s41589-022-00983-y. PMID:35289327<ref>PMID:35289327</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 7lha" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Sulfatase 3D structures|Sulfatase 3D structures]]
*[[Sulfatase 3D structures|Sulfatase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacteroides uniformis]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Boraston AB]]
[[Category: Boraston AB]]
[[Category: Robb CS]]
[[Category: Robb CS]]

Latest revision as of 18:48, 18 October 2023

Structure of the Exo-L-galactose-6-sulfatase BuS1_11 from Bacteroides uniformisStructure of the Exo-L-galactose-6-sulfatase BuS1_11 from Bacteroides uniformis

Structural highlights

7lha is a 2 chain structure with sequence from Bacteroides uniformis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.95Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

A0A4Y1VMZ7_BACUN

Publication Abstract from PubMed

Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroides uniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients.

Metabolism of a hybrid algal galactan by members of the human gut microbiome.,Robb CS, Hobbs JK, Pluvinage B, Reintjes G, Klassen L, Monteith S, Giljan G, Amundsen C, Vickers C, Hettle AG, Hills R, Nitin, Xing X, Montina T, Zandberg WF, Abbott DW, Boraston AB Nat Chem Biol. 2022 Mar 14. pii: 10.1038/s41589-022-00983-y. doi:, 10.1038/s41589-022-00983-y. PMID:35289327[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Robb CS, Hobbs JK, Pluvinage B, Reintjes G, Klassen L, Monteith S, Giljan G, Amundsen C, Vickers C, Hettle AG, Hills R, Nitin, Xing X, Montina T, Zandberg WF, Abbott DW, Boraston AB. Metabolism of a hybrid algal galactan by members of the human gut microbiome. Nat Chem Biol. 2022 Mar 14. pii: 10.1038/s41589-022-00983-y. doi:, 10.1038/s41589-022-00983-y. PMID:35289327 doi:http://dx.doi.org/10.1038/s41589-022-00983-y

7lha, resolution 1.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA