3az3: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='3az3' size='340' side='right'caption='[[3az3]], [[Resolution|resolution]] 1.36&Aring;' scene=''>
<StructureSection load='3az3' size='340' side='right'caption='[[3az3]], [[Resolution|resolution]] 1.36&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3az3]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AZ3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3AZ3 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3az3]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AZ3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3AZ3 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DS6:(4S)-4-HYDROXY-5-[4-(3-{4-[(3S)-3-HYDROXY-4,4-DIMETHYLPENTYL]-3-METHYLPHENYL}PENTAN-3-YL)-2-METHYLPHENOXY]PENTANOIC+ACID'>DS6</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.36&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3az1|3az1]], [[3az2|3az2]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DS6:(4S)-4-HYDROXY-5-[4-(3-{4-[(3S)-3-HYDROXY-4,4-DIMETHYLPENTYL]-3-METHYLPHENYL}PENTAN-3-YL)-2-METHYLPHENOXY]PENTANOIC+ACID'>DS6</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">NR1I1, VDR ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3az3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3az3 OCA], [https://pdbe.org/3az3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3az3 RCSB], [https://www.ebi.ac.uk/pdbsum/3az3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3az3 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3az3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3az3 OCA], [https://pdbe.org/3az3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3az3 RCSB], [https://www.ebi.ac.uk/pdbsum/3az3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3az3 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[https://www.uniprot.org/uniprot/VDR_HUMAN VDR_HUMAN]] Defects in VDR are the cause of rickets vitamin D-dependent type 2A (VDDR2A) [MIM:[https://omim.org/entry/277440 277440]]. A disorder of vitamin D metabolism resulting in severe rickets, hypocalcemia and secondary hyperparathyroidism. Most patients have total alopecia in addition to rickets.<ref>PMID:2849209</ref> <ref>PMID:8381803</ref> <ref>PMID:1652893</ref> <ref>PMID:2177843</ref> <ref>PMID:8106618</ref> <ref>PMID:8392085</ref> <ref>PMID:7828346</ref> <ref>PMID:8675579</ref> <ref>PMID:8961271</ref> <ref>PMID:9005998</ref>
[https://www.uniprot.org/uniprot/VDR_HUMAN VDR_HUMAN] Defects in VDR are the cause of rickets vitamin D-dependent type 2A (VDDR2A) [MIM:[https://omim.org/entry/277440 277440]. A disorder of vitamin D metabolism resulting in severe rickets, hypocalcemia and secondary hyperparathyroidism. Most patients have total alopecia in addition to rickets.<ref>PMID:2849209</ref> <ref>PMID:8381803</ref> <ref>PMID:1652893</ref> <ref>PMID:2177843</ref> <ref>PMID:8106618</ref> <ref>PMID:8392085</ref> <ref>PMID:7828346</ref> <ref>PMID:8675579</ref> <ref>PMID:8961271</ref> <ref>PMID:9005998</ref>  
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/VDR_HUMAN VDR_HUMAN]] Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.<ref>PMID:16252006</ref> <ref>PMID:10678179</ref> <ref>PMID:15728261</ref> <ref>PMID:16913708</ref>
[https://www.uniprot.org/uniprot/VDR_HUMAN VDR_HUMAN] Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.<ref>PMID:16252006</ref> <ref>PMID:10678179</ref> <ref>PMID:15728261</ref> <ref>PMID:16913708</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 30: Line 29:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Iijima, S]]
[[Category: Iijima S]]
[[Category: Itoh, S]]
[[Category: Itoh S]]
[[Category: Hormone receptor]]
[[Category: Vitamin d receptor]]

Revision as of 11:49, 11 October 2023

Crystal Structure Analysis of Vitamin D receptorCrystal Structure Analysis of Vitamin D receptor

Structural highlights

3az3 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.36Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

VDR_HUMAN Defects in VDR are the cause of rickets vitamin D-dependent type 2A (VDDR2A) [MIM:277440. A disorder of vitamin D metabolism resulting in severe rickets, hypocalcemia and secondary hyperparathyroidism. Most patients have total alopecia in addition to rickets.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Function

VDR_HUMAN Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.[11] [12] [13] [14]

Publication Abstract from PubMed

Novel vitamin D(3) analogs with carboxylic acid were explored, focusing on a nonsecosteroidal analog, LG190178, with a bisphenyl skeleton. From X-ray analysis of these analogs with vitamin D receptor (VDR), the carboxyl groups had very unique hydrogen bonding interactions in VDR and mimicked 1alpha-hydroxy group and/or 3beta-hydroxy group of 1alpha,25-dihydroxyvitamin D(3). A highly potent analog, 6a, with good in vitro activity and pharmacokinetic profiles was identified from an SAR study. Compound 6a showed significant prevention of bone loss in a rat osteoporosis model by oral administration.

Novel nonsecosteroidal vitamin D(3) carboxylic acid analogs for osteoporosis, and SAR analysis.,Kashiwagi H, Ono Y, Shimizu K, Haneishi T, Ito S, Iijima S, Kobayashi T, Ichikawa F, Harada S, Sato H, Sekiguchi N, Ishigai M, Takahashi T Bioorg Med Chem. 2011 Aug 15;19(16):4721-9. Epub 2011 Jul 8. PMID:21795053[15]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O'Malley BW. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science. 1988 Dec 23;242(4886):1702-5. PMID:2849209
  2. Yagi H, Ozono K, Miyake H, Nagashima K, Kuroume T, Pike JW. A new point mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor in a kindred with hereditary 1,25-dihydroxyvitamin D-resistant rickets. J Clin Endocrinol Metab. 1993 Feb;76(2):509-12. PMID:8381803
  3. Saijo T, Ito M, Takeda E, Huq AH, Naito E, Yokota I, Sone T, Pike JW, Kuroda Y. A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection. Am J Hum Genet. 1991 Sep;49(3):668-73. PMID:1652893
  4. Sone T, Marx SJ, Liberman UA, Pike JW. A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3. Mol Endocrinol. 1990 Apr;4(4):623-31. PMID:2177843
  5. Malloy PJ, Weisman Y, Feldman D. Hereditary 1 alpha,25-dihydroxyvitamin D-resistant rickets resulting from a mutation in the vitamin D receptor deoxyribonucleic acid-binding domain. J Clin Endocrinol Metab. 1994 Feb;78(2):313-6. PMID:8106618
  6. Kristjansson K, Rut AR, Hewison M, O'Riordan JL, Hughes MR. Two mutations in the hormone binding domain of the vitamin D receptor cause tissue resistance to 1,25 dihydroxyvitamin D3. J Clin Invest. 1993 Jul;92(1):12-6. PMID:8392085 doi:http://dx.doi.org/10.1172/JCI116539
  7. Rut AR, Hewison M, Kristjansson K, Luisi B, Hughes MR, O'Riordan JL. Two mutations causing vitamin D resistant rickets: modelling on the basis of steroid hormone receptor DNA-binding domain crystal structures. Clin Endocrinol (Oxf). 1994 Nov;41(5):581-90. PMID:7828346
  8. Lin NU, Malloy PJ, Sakati N, al-Ashwal A, Feldman D. A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets. J Clin Endocrinol Metab. 1996 Jul;81(7):2564-9. PMID:8675579
  9. Whitfield GK, Selznick SH, Haussler CA, Hsieh JC, Galligan MA, Jurutka PW, Thompson PD, Lee SM, Zerwekh JE, Haussler MR. Vitamin D receptors from patients with resistance to 1,25-dihydroxyvitamin D3: point mutations confer reduced transactivation in response to ligand and impaired interaction with the retinoid X receptor heterodimeric partner. Mol Endocrinol. 1996 Dec;10(12):1617-31. PMID:8961271
  10. Malloy PJ, Eccleshall TR, Gross C, Van Maldergem L, Bouillon R, Feldman D. Hereditary vitamin D resistant rickets caused by a novel mutation in the vitamin D receptor that results in decreased affinity for hormone and cellular hyporesponsiveness. J Clin Invest. 1997 Jan 15;99(2):297-304. PMID:9005998 doi:10.1172/JCI119158
  11. Fujiki R, Kim MS, Sasaki Y, Yoshimura K, Kitagawa H, Kato S. Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J. 2005 Nov 16;24(22):3881-94. Epub 2005 Oct 27. PMID:16252006 doi:10.1038/sj.emboj.7600853
  12. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000 Jan;5(1):173-9. PMID:10678179
  13. Eelen G, Verlinden L, Rochel N, Claessens F, De Clercq P, Vandewalle M, Tocchini-Valentini G, Moras D, Bouillon R, Verstuyf A. Superagonistic action of 14-epi-analogs of 1,25-dihydroxyvitamin D explained by vitamin D receptor-coactivator interaction. Mol Pharmacol. 2005 May;67(5):1566-73. Epub 2005 Feb 22. PMID:15728261 doi:10.1124/mol.104.008730
  14. Hourai S, Fujishima T, Kittaka A, Suhara Y, Takayama H, Rochel N, Moras D. Probing a water channel near the A-ring of receptor-bound 1 alpha,25-dihydroxyvitamin D3 with selected 2 alpha-substituted analogues. J Med Chem. 2006 Aug 24;49(17):5199-205. PMID:16913708 doi:http://dx.doi.org/10.1021/jm0604070
  15. Kashiwagi H, Ono Y, Shimizu K, Haneishi T, Ito S, Iijima S, Kobayashi T, Ichikawa F, Harada S, Sato H, Sekiguchi N, Ishigai M, Takahashi T. Novel nonsecosteroidal vitamin D(3) carboxylic acid analogs for osteoporosis, and SAR analysis. Bioorg Med Chem. 2011 Aug 15;19(16):4721-9. Epub 2011 Jul 8. PMID:21795053 doi:10.1016/j.bmc.2011.07.001

3az3, resolution 1.36Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA