6usr: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6usr' size='340' side='right'caption='[[6usr]], [[Resolution|resolution]] 2.93Å' scene=''> | <StructureSection load='6usr' size='340' side='right'caption='[[6usr]], [[Resolution|resolution]] 2.93Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6usr]] is a 3 chain structure with sequence from [ | <table><tr><td colspan='2'>[[6usr]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Tribolium_castaneum Tribolium castaneum] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6USR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6USR FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.93Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=G2P:PHOSPHOMETHYLPHOSPHONIC+ACID+GUANYLATE+ESTER'>G2P</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
< | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6usr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6usr OCA], [https://pdbe.org/6usr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6usr RCSB], [https://www.ebi.ac.uk/pdbsum/6usr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6usr ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/Q0QHL8_TRICA Q0QHL8_TRICA] | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 20: | Line 21: | ||
==See Also== | ==See Also== | ||
*[[Telomerase|Telomerase]] | *[[Telomerase 3D structures|Telomerase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 26: | Line 27: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Synthetic construct]] | ||
[[Category: | [[Category: Tribolium castaneum]] | ||
[[Category: Freudenthal | [[Category: Freudenthal BD]] | ||
[[Category: Schaich | [[Category: Schaich MA]] | ||
Latest revision as of 10:57, 11 October 2023
Telomerase Reverse Transcriptase ternary complex, TERT:DNA:dGpCppTelomerase Reverse Transcriptase ternary complex, TERT:DNA:dGpCpp
Structural highlights
FunctionPublication Abstract from PubMedTelomerase extends telomere sequences at chromosomal ends to protect genomic DNA. During this process it must select the correct nucleotide from a pool of nucleotides with various sugars and base pairing properties, which is critically important for the proper capping of telomeric sequences by shelterin. Unfortunately, how telomerase selects correct nucleotides is unknown. Here, we determined structures of Tribolium castaneum telomerase reverse transcriptase (TERT) throughout its catalytic cycle and mapped the active site residues responsible for nucleoside selection, metal coordination, triphosphate binding, and RNA template stabilization. We found that TERT inserts a mismatch or ribonucleotide ~1 in 10,000 and ~1 in 14,000 insertion events, respectively. At biological ribonucleotide concentrations, these rates translate to ~40 ribonucleotides inserted per 10 kilobases. Human telomerase assays determined a conserved tyrosine steric gate regulates ribonucleotide insertion into telomeres. Cumulatively, our work provides insight into how telomerase selects the proper nucleotide to maintain telomere integrity. Mechanisms of nucleotide selection by telomerase.,Schaich MA, Sanford SL, Welfer GA, Johnson SA, Khoang TH, Opresko PL, Freudenthal BD Elife. 2020 Jun 5;9. pii: 55438. doi: 10.7554/eLife.55438. PMID:32501800[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|