6nql: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6nql' size='340' side='right'caption='[[6nql]], [[Resolution|resolution]] 2.15Å' scene=''> | <StructureSection load='6nql' size='340' side='right'caption='[[6nql]], [[Resolution|resolution]] 2.15Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6nql]] is a 8 chain structure with sequence from [ | <table><tr><td colspan='2'>[[6nql]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Echinophyllia_sp._SC22 Echinophyllia sp. SC22]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6NQL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6NQL FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.147Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=KZ7:{(4Z)-2-[(1R)-1-amino-2-sulfanylethyl]-4-[(3-chloro-4-hydroxyphenyl)methylidene]-5-oxo-4,5-dihydro-1H-imidazol-1-yl}acetic+acid'>KZ7</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6nql FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6nql OCA], [https://pdbe.org/6nql PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6nql RCSB], [https://www.ebi.ac.uk/pdbsum/6nql PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6nql ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/Q5TLG6_9CNID Q5TLG6_9CNID] | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 21: | Line 22: | ||
==See Also== | ==See Also== | ||
*[[Dronpa|Dronpa]] | *[[Dronpa|Dronpa]] | ||
*[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Echinophyllia sp. | [[Category: Echinophyllia sp. SC22]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Boxer | [[Category: Boxer SG]] | ||
[[Category: Lin | [[Category: Lin C-Y]] | ||
[[Category: Mathews | [[Category: Mathews II]] | ||
[[Category: Romei | [[Category: Romei MG]] | ||
Latest revision as of 09:58, 11 October 2023
Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(3-ClY)Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(3-ClY)
Structural highlights
FunctionPublication Abstract from PubMedRotation around a specific bond after photoexcitation is central to vision and emerging opportunities in optogenetics, super-resolution microscopy, and photoactive molecular devices. Competing roles for steric and electrostatic effects that govern bond-specific photoisomerization have been widely discussed, the latter originating from chromophore charge transfer upon excitation. We systematically altered the electrostatic properties of the green fluorescent protein chromophore in a photoswitchable variant, Dronpa2, using amber suppression to introduce electron-donating and electron-withdrawing groups to the phenolate ring. Through analysis of the absorption (color), fluorescence quantum yield, and energy barriers to ground- and excited-state isomerization, we evaluate the contributions of sterics and electrostatics quantitatively and demonstrate how electrostatic effects bias the pathway of chromophore photoisomerization, leading to a generalized framework to guide protein design. Electrostatic control of photoisomerization pathways in proteins.,Romei MG, Lin CY, Mathews II, Boxer SG Science. 2020 Jan 3;367(6473):76-79. doi: 10.1126/science.aax1898. PMID:31896714[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|