5uql: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='5uql' size='340' side='right'caption='[[5uql]], [[Resolution|resolution]] 1.97Å' scene=''> | <StructureSection load='5uql' size='340' side='right'caption='[[5uql]], [[Resolution|resolution]] 1.97Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5uql]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[5uql]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Clostridioides_difficile Clostridioides difficile]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UQL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5UQL FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.97Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=U2F:URIDINE-5-DIPHOSPHATE-2-DEOXY-2-FLUORO-ALPHA-D-GLUCOSE'>U2F</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5uql FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5uql OCA], [https://pdbe.org/5uql PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5uql RCSB], [https://www.ebi.ac.uk/pdbsum/5uql PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5uql ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/TCDA_CLODI TCDA_CLODI] Precursor of a cytotoxin that targets and disrupts the colonic epithelium, inducing the host inflammatory and innate immune responses and resulting in diarrhea and pseudomembranous colitis (PubMed:20844489). TcdA and TcdB constitute the main toxins that mediate the pathology of C.difficile infection, an opportunistic pathogen that colonizes the colon when the normal gut microbiome is disrupted (PubMed:19252482, PubMed:20844489). Compared to TcdB, TcdA is less virulent and less important for inducing the host inflammatory and innate immune responses (PubMed:19252482). This form constitutes the precursor of the toxin: it enters into host cells and mediates autoprocessing to release the active toxin (Glucosyltransferase TcdA) into the host cytosol (By similarity). Targets colonic epithelia by binding to some receptor, and enters host cells via clathrin-mediated endocytosis (By similarity). Binding to LDLR, as well as carbohydrates and sulfated glycosaminoglycans on host cell surface contribute to entry into cells (PubMed:1670930, PubMed:31160825, PubMed:16622409). In contrast to TcdB, Frizzled receptors FZD1, FZD2 and FZD7 do not act as host receptors in the colonic epithelium for TcdA (PubMed:27680706). Once entered into host cells, acidification in the endosome promotes the membrane insertion of the translocation region and formation of a pore, leading to translocation of the GT44 and peptidase C80 domains across the endosomal membrane (By similarity). This activates the peptidase C80 domain and autocatalytic processing, releasing the N-terminal part (Glucosyltransferase TcdA), which constitutes the active part of the toxin, in the cytosol (PubMed:17334356, PubMed:19553670, PubMed:27571750).[UniProtKB:P18177]<ref>PMID:16622409</ref> <ref>PMID:1670930</ref> <ref>PMID:17334356</ref> <ref>PMID:19252482</ref> <ref>PMID:19553670</ref> <ref>PMID:20844489</ref> <ref>PMID:27571750</ref> <ref>PMID:27680706</ref> <ref>PMID:31160825</ref> Active form of the toxin, which is released into the host cytosol following autoprocessing and inactivates small GTPases (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Acts by mediating monoglucosylation of small GTPases of the Rho family (Rac1, RhoA, RhoB, RhoC, Rap2A and Cdc42) in host cells at the conserved threonine residue located in the switch I region ('Thr-37/35'), using UDP-alpha-D-glucose as the sugar donor (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Monoglucosylation of host small GTPases completely prevents the recognition of the downstream effector, blocking the GTPases in their inactive form, leading to actin cytoskeleton disruption and cell death, resulting in the loss of colonic epithelial barrier function (PubMed:7775453). Also able to catalyze monoglucosylation of some members of the Ras family (H-Ras/HRAS, K-Ras/KRAS and N-Ras/NRAS), but with much less efficiency than with Rho proteins, suggesting that it does not act on Ras proteins in vivo (PubMed:30622517).<ref>PMID:22267739</ref> <ref>PMID:22747490</ref> <ref>PMID:24905543</ref> <ref>PMID:30622517</ref> <ref>PMID:7775453</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 24: | Line 23: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Clostridioides difficile]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Alvin | [[Category: Alvin JW]] | ||
[[Category: Lacy | [[Category: Lacy DB]] | ||
Latest revision as of 16:32, 4 October 2023
Clostridium difficile toxin A (TcdA) glucosyltransferase domain in complex with U2FClostridium difficile toxin A (TcdA) glucosyltransferase domain in complex with U2F
Structural highlights
FunctionTCDA_CLODI Precursor of a cytotoxin that targets and disrupts the colonic epithelium, inducing the host inflammatory and innate immune responses and resulting in diarrhea and pseudomembranous colitis (PubMed:20844489). TcdA and TcdB constitute the main toxins that mediate the pathology of C.difficile infection, an opportunistic pathogen that colonizes the colon when the normal gut microbiome is disrupted (PubMed:19252482, PubMed:20844489). Compared to TcdB, TcdA is less virulent and less important for inducing the host inflammatory and innate immune responses (PubMed:19252482). This form constitutes the precursor of the toxin: it enters into host cells and mediates autoprocessing to release the active toxin (Glucosyltransferase TcdA) into the host cytosol (By similarity). Targets colonic epithelia by binding to some receptor, and enters host cells via clathrin-mediated endocytosis (By similarity). Binding to LDLR, as well as carbohydrates and sulfated glycosaminoglycans on host cell surface contribute to entry into cells (PubMed:1670930, PubMed:31160825, PubMed:16622409). In contrast to TcdB, Frizzled receptors FZD1, FZD2 and FZD7 do not act as host receptors in the colonic epithelium for TcdA (PubMed:27680706). Once entered into host cells, acidification in the endosome promotes the membrane insertion of the translocation region and formation of a pore, leading to translocation of the GT44 and peptidase C80 domains across the endosomal membrane (By similarity). This activates the peptidase C80 domain and autocatalytic processing, releasing the N-terminal part (Glucosyltransferase TcdA), which constitutes the active part of the toxin, in the cytosol (PubMed:17334356, PubMed:19553670, PubMed:27571750).[UniProtKB:P18177][1] [2] [3] [4] [5] [6] [7] [8] [9] Active form of the toxin, which is released into the host cytosol following autoprocessing and inactivates small GTPases (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Acts by mediating monoglucosylation of small GTPases of the Rho family (Rac1, RhoA, RhoB, RhoC, Rap2A and Cdc42) in host cells at the conserved threonine residue located in the switch I region ('Thr-37/35'), using UDP-alpha-D-glucose as the sugar donor (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Monoglucosylation of host small GTPases completely prevents the recognition of the downstream effector, blocking the GTPases in their inactive form, leading to actin cytoskeleton disruption and cell death, resulting in the loss of colonic epithelial barrier function (PubMed:7775453). Also able to catalyze monoglucosylation of some members of the Ras family (H-Ras/HRAS, K-Ras/KRAS and N-Ras/NRAS), but with much less efficiency than with Rho proteins, suggesting that it does not act on Ras proteins in vivo (PubMed:30622517).[10] [11] [12] [13] [14] Publication Abstract from PubMedClostridium difficile is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis worldwide. The organism produces two homologous toxins, TcdA and TcdB, which enter and disrupt host cell function by glucosylating and thereby inactivating key signalling molecules within the host. As a toxin-mediated disease, there has been a significant interest in identifying small molecule inhibitors of the toxins' glucosyltransferase activities. This study was initiated as part of an effort to identify the mode of inhibition for a small molecule inhibitor of glucosyltransferase activity called apigenin. In the course of trying to get co-crystals with this inhibitor, we determined five different structures of the TcdA and TcdB glucosyltransferase domains and made use of a non-hydrolyzable UDP-glucose substrate. While we were able to visualize apigenin bound in one of our structures, the site was a crystal packing interface and not likely to explain the mode of inhibition. Nevertheless, the structure allowed us to capture an apo-state (one without the sugar nucleotide substrate) of the TcdB glycosyltransferase domain that had not been previously observed. Comparison of this structure with structures obtained in the presence of a non-hydrolyzable UDP-glucose analogue have allowed us to document multiple conformations of a C-terminal loop important for catalysis. We present our analysis of these five new structures with the hope that it will advance inhibitor design efforts for this important class of biological toxins. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue.,Alvin JW, Lacy DB J Struct Biol. 2017 Apr 19. pii: S1047-8477(17)30059-X. doi:, 10.1016/j.jsb.2017.04.006. PMID:28433497[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|