5k5s: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='5k5s' size='340' side='right'caption='[[5k5s]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
<StructureSection load='5k5s' size='340' side='right'caption='[[5k5s]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5k5s]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K5S OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5K5S FirstGlance]. <br>
<table><tr><td colspan='2'>[[5k5s]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K5S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5K5S FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=TRP:TRYPTOPHAN'>TRP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5k5t|5k5t]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=TRP:TRYPTOPHAN'>TRP</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CASR, GPRC2A, PCAR1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5k5s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k5s OCA], [https://pdbe.org/5k5s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5k5s RCSB], [https://www.ebi.ac.uk/pdbsum/5k5s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5k5s ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5k5s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k5s OCA], [http://pdbe.org/5k5s PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5k5s RCSB], [http://www.ebi.ac.uk/pdbsum/5k5s PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5k5s ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/CASR_HUMAN CASR_HUMAN]] Autosomal dominant hypocalcemia;Familial isolated hypoparathyroidism due to impaired PTH secretion;Neonatal severe primary hyperparathyroidism;Familial hypocalciuric hypercalcemia type 1;Bartter syndrome with hypocalcemia. The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry.  Disease susceptibility is associated with variations affecting the gene represented in this entry.  Homozygous defects in CASR can be a cause of primary hyperparathyroidism in adulthood. Patients suffer from osteoporosis and renal calculi, have marked hypercalcemia and increased serum PTH concentrations.  
[https://www.uniprot.org/uniprot/CASR_HUMAN CASR_HUMAN] Autosomal dominant hypocalcemia;Familial isolated hypoparathyroidism due to impaired PTH secretion;Neonatal severe primary hyperparathyroidism;Familial hypocalciuric hypercalcemia type 1;Bartter syndrome with hypocalcemia. The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry.  Disease susceptibility is associated with variations affecting the gene represented in this entry.  Homozygous defects in CASR can be a cause of primary hyperparathyroidism in adulthood. Patients suffer from osteoporosis and renal calculi, have marked hypercalcemia and increased serum PTH concentrations.
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CASR_HUMAN CASR_HUMAN]] Senses changes in the extracellular concentration of calcium ions. The activity of this receptor is mediated by a G-protein that activates a phosphatidylinositol-calcium second messenger system.  
[https://www.uniprot.org/uniprot/CASR_HUMAN CASR_HUMAN] Senses changes in the extracellular concentration of calcium ions. The activity of this receptor is mediated by a G-protein that activates a phosphatidylinositol-calcium second messenger system.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 26: Line 25:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Brennan, S C]]
[[Category: Brennan SC]]
[[Category: Brown, A P]]
[[Category: Brown AP]]
[[Category: Bush, M]]
[[Category: Bush M]]
[[Category: Cao, B]]
[[Category: Cao B]]
[[Category: Chang, D]]
[[Category: Chang D]]
[[Category: Chen, Y]]
[[Category: Chen Y]]
[[Category: Cheng, T C]]
[[Category: Cheng TC]]
[[Category: Colecraft, H M]]
[[Category: Colecraft HM]]
[[Category: Conigrave, A]]
[[Category: Conigrave A]]
[[Category: Fan, Q R]]
[[Category: Fan QR]]
[[Category: Geng, Y]]
[[Category: Geng Y]]
[[Category: Kurinov, I]]
[[Category: Kurinov I]]
[[Category: McDonald, P]]
[[Category: McDonald P]]
[[Category: Mosyak, L]]
[[Category: Mosyak L]]
[[Category: Mun, H C]]
[[Category: Mun H-C]]
[[Category: Nguyen, T]]
[[Category: Nguyen T]]
[[Category: Quick, M]]
[[Category: Quick M]]
[[Category: Sturchler, E]]
[[Category: Sturchler E]]
[[Category: Subramanyam, P]]
[[Category: Subramanyam P]]
[[Category: Zuo, H]]
[[Category: Zuo H]]
[[Category: Cysteine-rich domain]]
[[Category: Homodimer]]
[[Category: Signaling protein]]
[[Category: Venus flytrap module]]

Latest revision as of 13:40, 27 September 2023

Crystal structure of the active form of human calcium-sensing receptor extracellular domainCrystal structure of the active form of human calcium-sensing receptor extracellular domain

Structural highlights

5k5s is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CASR_HUMAN Autosomal dominant hypocalcemia;Familial isolated hypoparathyroidism due to impaired PTH secretion;Neonatal severe primary hyperparathyroidism;Familial hypocalciuric hypercalcemia type 1;Bartter syndrome with hypocalcemia. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Disease susceptibility is associated with variations affecting the gene represented in this entry. Homozygous defects in CASR can be a cause of primary hyperparathyroidism in adulthood. Patients suffer from osteoporosis and renal calculi, have marked hypercalcemia and increased serum PTH concentrations.

Function

CASR_HUMAN Senses changes in the extracellular concentration of calcium ions. The activity of this receptor is mediated by a G-protein that activates a phosphatidylinositol-calcium second messenger system.

Publication Abstract from PubMed

Human calcium-sensing receptor (CaSR) is a G-protein coupled receptor (GPCR) that maintains extracellular Ca2+ homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft, and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+ and PO43- ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ ions stabilize the active state, PO43- ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

Structural mechanism of ligand activation in human calcium-sensing receptor.,Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, Subramanyam P, Brown AP, Brennan SC, Mun HC, Bush M, Chen Y, Nguyen TX, Cao B, Chang DD, Quick M, Conigrave AD, Colecraft HM, McDonald P, Fan QR Elife. 2016 Jul 19;5. pii: e13662. doi: 10.7554/eLife.13662. PMID:27434672[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, Subramanyam P, Brown AP, Brennan SC, Mun HC, Bush M, Chen Y, Nguyen TX, Cao B, Chang DD, Quick M, Conigrave AD, Colecraft HM, McDonald P, Fan QR. Structural mechanism of ligand activation in human calcium-sensing receptor. Elife. 2016 Jul 19;5. pii: e13662. doi: 10.7554/eLife.13662. PMID:27434672 doi:http://dx.doi.org/10.7554/eLife.13662

5k5s, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA